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Abstract—The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects
Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able
to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning
resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper
first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and
derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between
semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and
classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering
emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An
e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is
suggested.

Index Terms—Community discovery, e-learning, emerging semantics, semantic community, Semantic Link Network.
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1 INTRODUCTION

THE World Wide Web provides not only a worldwide
information sharing platform but also plentiful con-

tents for Web-based learning. However, the Web’s
hyperlink architecture interconnects Web resources for
browsing freely rather than for learning effectively. There-
fore, how to effectively organize learning resources of
various types to support e-learning in a semantic context
becomes a challenge.

The following three issues are critical for a Web-based e-
learning system to organize resources for effective learning:

1. A self-organized semantic data model that can
effectively organize resources and loosely couple a
query and the structure of organizing resources.

2. Automatically discovering various semantic com-
munities in the network of semantically linked
resources so that operations on resources can be
efficiently executed.

3. Automatically discovering emerging semantic rela-
tions in a dynamic network of resources so that
queries on various relations can be answered
effectively.

To resolve the first issue, we propose the Semantic Link
Network (SLN), a self-organized semantic data model for
semantically organizing resources, which can be abstract
concepts or specific entities such as texts, images, videos,

and audios. For example, learning resources can be linked
to their classes by the instanceOf link, and a class can be
linked to its superclass by the subtype link. The SLN has the
following features:

1. It reflects various semantic relations between classes,
between relations, and between entity resources.

2. It is a semantics-rich self-organized network. Any
resource can be semantically linked to any other
resources. There is no strict structure like relational
databases.

3. It can derive out implicit semantic links based on a
set of reasoning rules.

4. The semantics of the network keeps evolving with
various operations on the network.

To resolve the second issue, this paper investigates the
approaches to discovering semantic communities in SLNs
according to the features of SLN. Previous graph-based
community discovery approaches have the following three
major limitations when applied to SLNs: 1) the effect is
unsatisfied because ordinary graphs cannot reflect semantic
relations, and it is incapable of supporting relation reason-
ing and relation query, which is often required in real
applications, 2) the meaning of the discovered communities
is unknown unless we assign semantics on edges and
nodes, and 3) their costs are too high to be used in a large-
scale network.

To resolve the third issue, this paper proposes two
approaches to discovering the emerging semantics in
dynamic SLNs. It is very useful for e-learning systems to
know the emerging semantics of a community and the
emerging semantic relations between resources in the SLN
evolving with interaction between users and the e-learning
system.

Incorporating the above solutions, an e-learning envir-
onment can support discovery and learning in a semantic
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context. The final part of this paper introduces the feature of
such an e-learning environment.

2 RELATED WORK

2.1 On Web-Based Learning
The study of Web-based learning mainly concerns the
applications of computing technologies, especially the Web
technologies to support effective learning on the World
Wide Web. An e-learning system that can select the sequence
of Web resources and link them into a coherent focused
organization for instruction is introduced in [10]. It can
automatically generate an individual learning path from a
repository of XML-based Web resources. A knowledge tree
is suggested as an architecture for adaptive e-learning based
on distributed reusable intelligent learning activities [8].
Many new technologies for e-learning over the Internet are
introduced in [19].

To discover the interested content and the basic semantic
relation in a large-scale network of contents is a basic issue
of realizing effective Web-based learning.

2.2 On Community Discovery and Relation Query
A particular structure often exists in the networks such as
the World Wide Web, citation networks, e-mail networks,
food webs, social networks, and biochemical networks:
nodes are often clustered into tightly knit groups, and edges
are dense within groups and loose between groups. Such a
structure reflects the characteristic of human group behavior
of sharing information. Research on discovering network
community has been done as graph partitioning in graph
theory, computer science, hierarchical clustering in sociol-
ogy, and geographical partition [4], [11], [14], [16], [17], [28],
[35] [36], [39]. One type of algorithms operates on the whole
graph and iteratively cuts appropriate edges. They divide
the network progressively into smaller disconnected com-
munities. The key step of the divisive algorithms is the
selection and removal of appropriate edges connecting
communities.

The idea of betweenness centrality is early proposed by
Freeman [11]. Girvan and Newman proposed a divisive
algorithm (called the GN algorithm) to select the edges to be
removed according to their “edge betweenness” [7], [12],
[22], [23], [24], [25], a generalization of the centrality
betweenness [11]. Considering the shortest paths between
all node pairs in a network, the betweenness of an edge is
the number of the shortest paths through it. It is clear that
when a graph is made of tightly bounded and loosely
interconnected clusters, all of the shortest paths between
nodes in different clusters need to go through these few
intercluster connections, which therefore own large be-
tweenness values. The GN algorithm consists of the
computation of the edge betweenness for all edges in the
graph and in the removal of those with the highest
betweenness value. The iteration of this procedure leads
to the split of the network into disconnected groups, which
in turn undergo the same procedure until the whole graph
is divided into a set of isolated nodes or a predefined
condition (e.g., the number of expected communities) is
satisfied. The communities are differentiated in a strong
sense and in a weak sense in [26].

It is worth to notice that many clustering algorithms can
be used to discover communities under different conditions
if we regard community discovery as a kind of clustering
process [32], [34].

In real-world networks, nodes and links contain some
information and may indicate certain semantics. If nodes
are assigned with semantics, heuristic methods can be used
to reduce the cost of operating the whole graph. The
similarity or dissimilarity between nodes can be measured
if nodes are represented by a set of features. Based on the
dissimilarity between nodes, the minimum spanning trees
generated from the original network can be used to
efficiently regionalize socioeconomic geographical units
[4]. A physics-based approach is proposed to find commu-
nities efficiently by using the notions of voltage drops
across networks [36].

Semantic relation discovery is an important issue for
network application. Aleman-Meza et al. propose an
approach to discovering various semantic associations
between reviewers and authors in a populated ontology
to determine a conflict degree of interest [3]. This ontology
was created by integrating entities and relationships from
two social networks: friend-of-a-friend and coauthor social
networks. Matsuo et al. propose a social network extraction
system, POLYPHONET, employing several techniques to
extract relations of persons, detect groups of persons, and
obtain keywords for a person [21]. Approaches to learning
the social network from incomplete relationship data are
proposed [20]. It assumes that only a small subset of
relations between individuals is known; therefore, the social
network extraction is translated into a text classification
problem. Cai et al. discuss the approach to mining hidden
communities in heterogeneous social networks [9].

The topological structures of three real online social
networking services, each with more than 10 million users,
are compared and analyzed in [2]. Kumar et al. present a
series of measurements of two such networks with more
than five million people and 10 million friendship links,
annotated with metadata capturing the time of every event
in the life of the network [18].

Pujol et al. discuss the issue of calculating the degree
of reputation for agents acting as assistants to the
members of an electronic community and give a solution.
Usual reputation mechanisms rely on the feedback after
interaction between agents [31]. An alternative way to
establish reputation is related with the position of each
member of a community within the corresponding social
network. The group formation issue in a large social
network is also discussed in [5].

The growth of social networking on the Web and the
properties of those networks have created a great potential
for producing intelligent software that integrates users’
social network and preferences. Golbeck and Hendler
assign trust in Web-based social networks and investigate
how trust information can be mined and integrated into
applications [13]. Hossain et al. draw on network centrality
concepts and coordination theory to understand how a
project’s team members interact when working toward a
common goal [15]. A text-mining application based on the
constructs of coordination theory was developed to
measure the coordinative activity of each employee. Results
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show that high network centrality is correlated to the ability
of an actor to coordinate actions of others in a project team.
Yang et al. studied the approach to community mining in a
signed social network [37]. An approach to discovering
global network communities based on local centralities is
proposed [38].

2.3 On Semantic Web and Semantic Link Network
Berners-Lee et al. proposed the notion of Semantic Web [6],
which has become a research area. The URI (www.w3.org/
Addressing/URL/URI_Overview.html) is used to uniquely
identify resources. XML (www.w3.org/XML/), RDF
(www.w3.org/RDF/), and OWL (www.w3.org/TR/owl-
features/) try to describe the semantics of resources from
structural, relational and logical points of view, respectively.
SPARQL (www.w3.org/TR/rdf-sparql-query/) serves as
the query language of the Semantic Web. The SLN was
proposed as a semantic data model for organizing various
Web resources by extending the Web’s hyperlink to a
semantic link.

SLN is a directed network consisting of semantic nodes
and semantic links. A semantic node can be a concept, an
instance of concept, a schema of data set, a URL, any form
of resources, or even an SLN [40]. A semantic link reflects a
kind of relational knowledge represented as a pointer with
a tag describing such semantic relations as causeEffect,
implication, subtype, similar, instance, sequence, reference, and
equal. The semantics of tags are usually common sense and
can be regulated by its category, relevant reasoning rules,
and use cases. A set of general semantic relation reasoning
rules was suggested in [40] and [42]. If a semantic link exists
between nodes, a link of reverse relation may exist, e.g.,
A—isSouthOf ! B is the reverse link of B—isNorthOf ! A,
where isSouthOf and isNorthof are common sense. A
relation could have a reverse relation. Relations and their
corresponding reverse relations are knowledge for support-
ing semantic relation reasoning. SLN is a self-organized
network since any node can link to any other node via a
semantic link.

SLN has been used to improve the efficiency of query
routing in P2P network [43], and it has been adopted as one
of the major mechanisms of organizing resources for the
Knowledge Grid [40]. Pons has successfully applied the
SLN to object prefetching and achieved a better result than
other approaches [30].

In the following, we extend the previous SLN model to a
self-organized semantic data model. For simplicity, SLN
denotes both the SLN as a model and the network of
semantic links in this paper.

3 THE SEMANTIC LINK NETWORK—
A SELF-ORGANIZED SEMANTIC DATA MODEL

3.1 The Basic Semantic Link Network Model
Various explicit and implicit semantic relations in the world
constitute various SLNs, which can be formalized into a
loosely coupled semantic data model for managing various
Web resources. It consists of semantic nodes, semantic links
between nodes, and a set of relational reasoning rules like
� � � ) � (i.e., the connection of semantic relation � and
semantic relation � implies semantic relation �).

As a data model, an SLN consists of the following parts,
as shown in Fig. 1:

1. Primitive semantic space. It specifies the semantics
of semantic nodes and semantic links. It consists of
the classification trees on concepts, which can also
represent relations, reasoning rules, and basic data
types. In a classification tree, the root concept is
classified by its subconcepts, which can be further
classified by finer subconcepts. The semantic
distance between two concepts in a classification
tree is the sum of their distances to the nearest
common ancestor. Usually, the first level of the
classification trees regulates common sense, and
the second-level regulates domain common sense
like ACM CCS. Users can use their own keywords
to tag semantic nodes and semantic links by
extending the classification. The frequently used
user-defined tags can be regarded as common
sense by linking them to existing classes (concepts),
but other user-defined tags should be given
detailed explanations. A semantic node in an SLN
can be represented as name: field or a schema
of data sets ‰name : field; . . . ; name : field�, where
name and field respectively represents the attri-
bute and its data type in this case. A field can also
refer to the path from a root to the class in the
classification tree. The field can be default if it is a
common sense. A semantic link is denoted as
name : ðSemanticNode; SemanticNodeÞ. The primi-
tive semantic space is shared by all participants
and evolves with their use of the space in
managing the expanding resources. The classifica-
tion trees exist in nature and society. In a large
social network, each individual can only know a
part of it.

2. Metric space. It values the semantic nodes and
semantic links. The value of a semantic link is in
positive proportion to the following three factors:
1) the values of its two ending nodes, 2) the times of
its occurrence in an SLN, and 3) the times it
participates in reasoning. The value of a semantic
node is in positive proportion to the values of its
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neighbor nodes. The metric space also determines
the probability over the SLN. The probability of the
existence of a semantic link is in positive proportion
to the probability of the existence of its precondition
relations of a reasoning rule. The probability of the
existence of a node is determined by the probability
that it belongs to a classification in the semantic
space.

3. Abstract SLN. It consists of abstract semantic nodes
and abstract semantic links, which connect semantic
nodes by abstract relations. An abstract SLN can be
regarded as the schema of SLN where semantic
nodes and semantic links are defined in the semantic
space.

4. Instance SLNs. An instance SLN consists of seman-
tic nodes and links instantiated from the abstract
SLN. An abstract SLN can generate several SLN
instances by instantiating its semantic nodes and
semantic links.

The SLN Schema is a triple denoted as SLN-Schema …
<ResourceTypes; LinkTypes; Rules>. ResourceTypes is a
set of resource types, each of which is represented as

ResourceType … ‰name : field�j‰name : field; . . . ; name
:field�:

LinkTypes is a set of semantic link types belonging
to ResourceTypes � ResourceTypes, each of which is
represented as

LinkType … ‰name : ðResourceType;ResourceTypeÞ�:

Rules is a set of reasoning rules on LinkTypes, denoted as
Rules … f� � � )�j�; �; � 2 LinkTypesg. The field can be
defined by the basic data type, classification trees, or rules
in the primitive semantic space.

The following are two strategies to construct an SLN as a
data model.

Schema-first strategy. Define the SLN schema first and then
instantiate it according to application requirements.

This strategy requires users to share the same schema
information: resource type, link type, and reasoning rules.
This also implies that users have consensus on the primitive
semantic space.

The SLN schema is useful in defining an SLN for special
interested groups or local applications. But it is not
appropriate to define a rigid schema for massive Web
applications, especially where resources are self-organized
and expanding, and relations keep changing.

Self-organized strategy. Users freely define instance SLNs and
their rules and then link them to each other. A linked semantic
data model can be obtained by analyzing existing SLNs,
discovering semantic communities, making abstraction on
semantic nodes and semantic links, and regulating the
semantic structure of semantic nodes.

The self-organized strategy can adapt to the change of
resources and relations. To raise efficiency, queries are more
often routed within the same semantic community than
across communities [43].

3.2 Operations of SLN
The following are some important SLN operations:

1. Locate all semantic nodes linked to the given node
via a set of given semantic links. If the semantic links
are default, it outputs all nodes linked to the
given node.

2. Locate the semantic community a given node
belongs to.

3. Locate the semantic communities a set of given
nodes belongs to.

4. Locate the semantic community a given semantic
link belongs to.

5. Locate a semantic path connected by a given pair of
semantic nodes.

6. Locate a semantic community that semantically
includes a given semantic community or semantic
node.

7. Delete a semantic link. If it inputs a semantic link,
then it deletes all of the semantic links that appeared
in the SLN. If it inputs a semantic link and two
semantic nodes, it deletes the semantic link between
the two semantic nodes.

8. Add a semantic link to the SLN. It inputs one
semantic link and two semantic nodes and then adds
the semantic link between the two nodes.

9. Delete an isolated semantic node in the SLN.
10. Add a semantic node to the SLN. It inputs a

semantic node, a semantic link, and a target
semantic node in the SLN and then connects
the semantic node to the target semantic node by
the semantic link.

The operations between SLNs “[,” “\,” and “�” are
graph-based operations listed as follows:

1. Union. It inputs SLN1 and SLN2 and then outputs
SLN … SLN1 [ SLN2, the union of two SLNs as a
graph and the union of the rule sets of SLN1
and SLN2.

2. Intersection. It inputs SLN1 and SLN2 and then
outputs SLN … SLN1 \ SLN2 by calculating the
intersection of two SLNs as a graph and the
intersection of two rule sets.

3. Difference. It inputs SLN1 and SLN2 and then outputs
SLN … SLN1 � SLN2 by removing their common
semantic links from SLN1 and keeping its own rules.

4. Matching. It inputs SLN1 and SLN2 and then outputs
a matching degree, which can be defined as a
function of the above operations.

SLN also provides the following operation to find the
influence set for high-level applications:

InfluenceSetInfluenceSetð�Þ. Given a relation �, find a subset of Rules that
satisfies the following:

1. If � appears in the precondition of a rule in Rules, then
the rule is also in InfluenceSetð�Þ.

2. If � is the postcondition of a rule in Rules, then the
rule is also in InfluenceSetð�Þ.

3. If there exists a set of rules rule1; . . . ; and rulen in
Rules such that they can link with each other for
reasoning and � appears in the precondition of rule1 or
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in the postcondition of rulen, then InfluenceSetð�Þ
includes rule1; . . . ; and rulen.

The influence set of a relation is actually all of the
relations that are influenced by or influence the given
semantic relation.

More operations can be defined for various purposes,
but what is the most basic set of operations? The following
lemma answers this question.

Lemma 1. The basic operation set of SLN consists of the following
four operations: add an isolated node n to SLN AddNodeðnÞ;
delete an isolated node n from SLN DelNodeðnÞ; add a
semantic link � between nodes n and n0 in SLN
AddLinkð�; n; n0Þ; and delete a semantic link � between two
nodes n and n0 in SLN DelLinkð�; n; n0Þ.

First, it is clear that operations in the basic set of
operations cannot be expressed with each other. Second, for
any two SLNs SLN1 and SLN2, there exists a series of basic
operations to transform one into the other. SLN1 and SLN2
can become the same by continuously applying the basic
operations in the following cases: use DelNode to delete
node n in SLN1 if there exists an isolated semantic node n in
SLN1 but not in SLN2, use AddNode to add an isolated
node n to SLN1 if there exists an isolated semantic node n
that is not in SLN1 but in SLN2, use DelLink to remove �
from SLN1 if there exists a semantic link � in SLN1 but not
in SLN2, and use AddLink to add � to SLN1 if there exists a
semantic link � in SLN2 but not in SLN1. Third, operations
between SLNs can be implemented by basic operations
since an SLN can be regarded as a semantic node.
Therefore, the above lemma holds.

3.3 Relational Reasoning of SLN
Two connected semantic links could derive out a new
semantic link if there is an applicable reasoning rule. The
reasoning rules can be regarded as an operation “�” on
semantic relations, e.g., rule n���! n0, n0���! n00 )
n���! n00 00 can be represented as a calculus on semantic
relations: � � � ) � (we say that �, �, and � participate in a
reasoning). Each rule can be assigned a certainty degree
defined in the metric space to represent the recommender’s
confidence on this rule. Table 1 gives some heuristic
reasoning rules for reference.

An SLN can be represented by a Semantic Relationship
Matrix (SRM), where element lij represents a set of semantic
relations from resource ri to rj, lii … eq, and lji is the reverse
relation of lij. If there are no semantic relations between ri
and rj, lij … lji … null. The SRM of any SLN is unique if the
order of nodes in the matrix is fixed.

Definition 1. The reasoning closure of SLN denoted as SLNþ is
a reasoning-complete SLN; no new semantic link can be
derived out by applying the reasoning rules.

The reasoning closure SLNþ can be computed by the
multiplication of the SRM [40]. For a given SRM
M … ðMi;jÞn�n, the result of Mi;k � Mk;j is still a matrix.
Mi;k � Mk;j means that the ith node can reach the jth node
with the semantic type in matrix Mi;k � Mk;j by two steps.
According to the definition of Mi;k � Mk;j, we can define
Mkþ1 … Mk � M, and Mðkþ1Þ

i;j means that the ith node can
reach the jth node with the semantic types in Mðkþ1Þ

i;j by

k þ 1 steps. Let X be the SRM of the SLNþ; then,
X … ðM1 þ M2 þ � � � þ MkÞ, where k is a positive integer
determined by the recursion procedure. The maximum
number of k is the length of the acyclic longest reasoning
path.

Characteristic 1. An SLN is equivalent to its reasoning closure
in semantics.

For the same SLN, given different reasoning rule sets
will generate different reasoning closures.

Characteristic 2. Two SLNs are equivalent if their reasoning
closures are the same.

Reasoning on SLNs only depends on its reasoning rules;
multiple semantic links or paths may exist between nodes
representing relations of different aspects, so the following
characteristic holds.

Characteristic 3. ð� � �Þ � � may not be equal to � � ð� � �Þ, for
any three sequentially connected relations �, �, and �.

Characteristic 4. The connection of two semantic links
(relations) may derive out a new semantic link different from
the existing semantic link between the same pair of nodes, that
is, the generation of a new semantic link depends on the Rules
of SLN.

The above characteristic implies that a network of
semantic links cannot fully determine its semantics. Given
different Rules, a network of semantic links can stand for
different semantics.

The SLN inherits the self-organization characteristics of
the Web’s hyperlink network. It is easy to use, without any
special training. It is a loosely coupled semantic data model
that allows new nodes to be freely added to the network by
establishing the semantic link(s) with existing semantic
nodes. Once established, it supports various relational
queries with rich semantic links and semantic relation
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reasoning. The SLN can be implemented on the Web by
RDF and Semantic Web Rule Language (SWRL).

3.4 Some Roles of Semantic Link in e-Learning
Isolated knowledge is useless as it is neither easily retrieved
nor easily expanded. Learning concerns internalizing and
externalizing knowledge and establishing relations between
knowledge of various types and from different sources. The
following are some roles of semantic links in e-learning:

1. A knowledge unit can be expanded or localized
through the isPartOf link.

2. A knowledge unit can be reused to solve similar
problems or answer similar questions through the
similar link.

3. A knowledge unit can be abstracted or specialized
through the subtype link.

4. A knowledge unit can be accessed from other
knowledge units through a semantic path, a sequen-
tial connection of semantic links.

Semantic links between resources can be established in
two ways: user definition and automatic discovery. User
definition relies on a software tool with the interface for
specifying semantic nodes and semantic links between two
sets of resources or connecting a new resource to an existing
resource by semantic link. A Web-based tool was developed
to support users to easily define and browse SLNs [41].

The diversity of semantic nodes in an SLN enables an
e-learning system to provide rich media for users. Based
on Web 2.0, an e-learning system can realize the ideal of
one for all and all for one during externalizing and
internalizing knowledge.

The process of automatically generating semantic links
can explain how this relation is established. The following
three ways can be cooperatively used to automatically
establish semantic links:

1. discovering semantic links in a given set of
resources by analyzing the contents of resources
and their metadata and determining their relations
according to the semantic links between contents
(e.g., similar relation and co-occurrence relation),
relations between metadata, and relations between
link structures,

2. deriving new semantic links by relational reasoning
and analogical reasoning on existing semantic links
according to reasoning rules [42], and

3. inferring a semantic link according to the frequency
of its appearance in SLNs.

Adding one semantic link to the existing SLN may
generate more semantic links. With the increment of
semantic links between resources, an e-learning system
becomes more capable of providing relational knowledge
for users. The relational reasoning mechanism further helps
users know the intrinsic relationship between resources in a
large-scale network of resources. The learning process is
involved in the definition and browsing of semantic links
relevant to the learned knowledge.

4 SEMANTIC COMMUNITIES

In the graph-based community, nodes are connected in
tightly knit groups, between which there are only looser

connections. The connection degree depends on the
quantity of edges within the community. The GN algorithm
works well in discovering the community structure in the
food web of the predator-prey interactions between species
[13]. But previous food webs do not reflect such semantic
relations as two species live in the same region and belong
to the same category.

In SLNs, semantic links reflect the semantics of connec-
tions, and potential semantic links could be derived out. An
example of SLN is the knowledge base of production rules,
whose transitivity enables new rules to be derived from
existing rules. Fig. 2 compares an ordinary graph (Fig. 2a)
and the corresponding SLN (Fig. 2b).

Before studying community discovery on SLNs, we
need to define the notion of semantic community. The
semantics of an SLN is defined in the primitive semantic
space. If the SLN is defined strictly according to the
characteristics of its semantic space, the semantic com-
munities can form trees. If the semantics of nodes is not
available, the semantic links and reasoning rules largely
represent the semantics of an SLN.

A distinguished characteristic of the SLN is its reasoning
ability. When the semantics of semantic nodes is not
available, if a semantic link cannot participate in reasoning
with its neighbor links, it can be regarded as isolated from
the network, and therefore, it makes less contribution to the
semantics of a community. Therefore, different from the
graph-based community notion, a semantic community
consists of two parts: structure and semantics.

Semantic community can be defined from the structure
and reasoning point of view as follows:

Definition 2. A reasoning-constraint semantic community is an
SLN satisfying the following three conditions:

1. It is a connected graph.
2. It does not include such a semantic link that does not

participate in any reasoning.
3. The intracommunity semantic links can participate in

reasoning with each other much more times than with
the intercommunity semantic links.

The second condition of above definition implies that a
semantic link should belong to another community if it
cannot participate in reasoning with its neighbor semantic
links. For example, a coAuthor relation should not be
added to a community of family relations as it could not
participate in reasoning with such relations as fatherOf,
motherOf, and brotherOf. This condition is used to discover
semantic communities, where every semantic link parti-
cipates in reasoning at least once. The third condition
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Fig. 2. (a) A graph consisting of two communities. (b) Adding semantics
to the edges could lead to the disappearance of the two communities
since new link d could be derived out if semantic links a and b satisfy rule
a � b ) d. A new semantic link e could be further derived from d and the
existing semantic link c.
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ensures that semantic links within a community should
be tight and should be loose between communities. This
definition allows two semantic communities to share a
semantic node. This also means that given different sets
of semantic links over the same set of nodes represents
different semantic communities.

One semantic link could derive out new semantic links
with its adjacent semantic links, and the new semantic links
could further derive out new semantic links with its
adjacent semantic link according to the reasoning rules.
Different semantic links play different roles in the SLN. The
total number of semantic links that can participate in
reasoning with a semantic link reflects its importance in the
network or the extent of other semantic links relying on it.
The following definition reflects such an importance or
reliance between semantic links, which will play a role in
discovering semantic communities in SLNs.

Definition 3. The semantic betweenness of a semantic link in a
given SLN is the number of times it participates in reasoning
according to reasoning rules.

Some reasoning rules are closely related, while others are
loosely related. A set of closely related rules influences the
formation of a semantic community.

Definition 4. A rule-constraint semantic community is an SLN,
where reasoning only carries out within a community.

The classification trees on concepts are another factor for
discovering semantic communities in an SLN. The basic
assumption is that the concepts in the same classification
tree should be closely related with each other, and there-
fore, they should be in the same semantic community.

Definition 5. An SLN is called a classification-constraint SLN if
all of its semantic nodes and semantic links (relations) appear
in the same classification tree.

Definition 6. A classification-constraint semantic community is
an SLN that satisfies the following:

1. Semantic nodes and relations belong to a common class
(community root) in the classification trees.

2. The semantic distance between any pair of intracom-
munity nodes � the semantic distance between any
pair of intercommunity nodes.

The above definition provides a way to find a semantic
community hierarchy of an SLN.

5 DISCOVERING REASONING-CONSTRAINT
SEMANTIC COMMUNITIES

5.1 Decomposition Approach
Here, we introduce an algorithm named SLN-DeCom to
discover semantic communities in an SLN. It removes the
semantic links with the lowest semantic betweenness with
reference to its closure SLNþ.

Algorithm SLN-DeCom (input: SLN; output: a
community tree)

1. Construct the SLNþ of the input SLN, record the
semantic betweenness of all semantic links and list
them in descending order, and record all of the

semantic links that have reasoned with any other
semantic link.

2. Remove all the semantic links with zero semantic
betweenness from the SLN (as the removal of these
semantic links will not affect the semantic betweenness
of other semantic links).

3. Remove the semantic link(s) with the smallest semantic
betweenness from the SLN if this does not generate
isolated nodes.

4. Check the reasoning rule set Rules and find all of the
semantic links that have reasoned with the semantic
link removed by step 3. Decrease the semantic
betweenness of the semantic links that have reasoned
with the removed semantic link(s) by 1.

5. Repeat from step 2 until no semantic links is qualified
to be removed or an isolated node is found.

The algorithm only needs to calculate the SLNþ once. It
can also avoid recalculating the semantic betweenness for
all semantic links after the removal of one semantic link by
checking the influenced semantic links in step 4 according
to rules.

A tree of communities could be formed during the
semantic community discovery process by using the
decomposition approach. The tree can help the e-learning
system to search and understand an SLN. For example, it
can reduce the search space by determining which branch
the target resides and explain the semantic community by
top-down or bottom-up ways.

As an example of applying this algorithm, we carried out
the following experiment. From the textbook of discrete
mathematics, we select 65 concepts and theorems and link
them according to their algebra relations, as shown in Fig. 3a.
The communities discovered by using the SLN-DeCom
algorithm are shown in Fig. 3b. The obtained semantic
communities match the real classifications in algebra. Fig. 3c
shows a larger SLN with more concepts in the relation model.
We then apply SLN-DeCom to discover its semantic
communities. Fig. 3d shows the following discovered mean-
ingful communities: graph community, set and relation
community, group and ring community, and relational
model community. We cannot obtain group community
and ring community, respectively, until the whole SLN is
divided into 10 communities. The reason is that group and
ring are separated from the group and ring community while
the connection between them is the weakest in the SLN,
whereas the connections between the nodes in the relational
model are weaker than the connection between group and
ring, which implies that the group community and ring
community occur until the relational model community is
divided into several communities. Such knowledge can be
used in the e-learning system to help push reasonable
content to users.

The algorithm has the following characteristics.

Characteristic 5. Let N be the number of nodes in the network
and n be the minimum number of nodes in a community. We
can observe the following phenomena:

1. The maximum number of communities is bN=nc.
2. The discovered communities form a tree, where

descendents are the subgraphs of their common
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ancestor. This tree structure helps localize the opera-
tion target.

3. To delete a semantic link earlier or later does not
influence the final result.

Two strategies can be adopted for community discovery,
breadth first or depth first, but the same result will be
reached because they are independent in the community
discovery process once a community is divided into two.

5.2 Construction Approach
Many networks have such features: some nodes play more
important roles than others in forming communities. An idea
of community discovery is to find some initial communities,
adjusting and combining communities to discover more
reasonable semantic communities according to the semantic
relationships in the SLNþ.

The following algorithm SLN-ConCom inputs the com-
munity intensity � to help decide whether two communities
should be combined into one community. If more than
� percent of nodes in one community are linked to the nodes
in another community or vice versa, the two communities
should be combined into one community. Experiments
indicate that the appropriate value of � is 33 percent. The
construction algorithm is described as follows:

Algorithm SLN-ConCom (Input: community intensity �;
Output: communities)

1. Calculate the degrees (the total number of in-links and
out-links) of all nodes in the given SLN and rank them
in descending order to form a degree queue (arbitrarily
arrange the order of the nodes with the same degree).

2. Construct the semantic closure SLNþ.
3. The node with the highest degree and its neighbors

constitute an initial community C0. Remove these
nodes from the degree queue. Let t … 0.

4. t … t þ 1; Let the first node k in the queue be the central
node of a new community Ct. Remove k from the
queue.

5. For every neighbor of node k, put the neighbor into one
community in fC0; . . . ; Ctg that has the largest number
of nodes semantically linked to the neighbor in SLNþ.

6. Check every community Cj ðj … 0; . . . ; tÞ. If more than
� percent of the neighbors of node k belong to the
community Cj or more than � percent of the nodes in
the community Cj semantically link to node k in SLNþ,
then merge Ct to Cj, and t … t � 1 (because the number
of communities does not increase).

7. Repeat from step 4 until the number of communities
satisfies the user requirement or all nodes have been
assigned to the communities.

As an example, applying this algorithm to the SLNs
shown in Figs. 3a and 3c obtains the same result as using
SLN-DeCom. The above algorithm can be enhanced by
making use of not only the important nodes but also the
important semantic links. This type of algorithms is suitable
for those SLNs where nodes or links are important in
semantics.
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Fig. 3. Examples of discovering semantic communities in SLNs. (a) An
SLN of 65 nodes on algebra. (b) Semantic communities in (a). (c) An SLN
of 102 semantic nodes. (d) Semantic communities in (c).
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