
The Journal of Systems and Software 72 (2004) 71–81

www.elsevier.com/locate/jss
Resource space model, its design method and applications

Hai Zhuge *

Knowledge Grid Group, Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences,

P.O. Box 2704-28, 100080 Beijing, PR China

Received 3 May 2002; received in revised form 7 July 2002; accepted 8 August 2002
Abstract

A resource space model (RSM) is a model for specifying, sharing and managing versatile Web resources with a universal resource

view. A normal resource space is a semantic coordinate system with independent coordinates and mutual-orthogonal axes. This

paper first introduces the main viewpoint and basic content of the RSM, and then proposes a four-step method for designing the

logical-level resource spaces: resource analysis, top-down resource partition, design two-dimensional resource spaces, and join between

resource spaces. Design strategies and tools include: reference model, analogy and abstraction strategy, resource dictionary, inde-

pendency checking tool, and orthogonality checking tool. The study on using the RSM to manage relational tables shows that the

RSM is also suitable for managing structured resources. Applications show that the RSM together with the proposed development

method is an applicable solution to realize normal and effective management of versatile web resources. Comparisons show the

differences between the proposed model and the relational data model.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Data model; Design method; Next-generation web; Resource space model; Semantic web; Web
1. Introduction

Database theories and systems have influenced the

world for nearly 40 years (Bachman, 1974; Codd, 1970).
Especially, the relational database theory, model and

systems have gained a great success. Object-oriented

databases and object-relational databases extended the

application width of the relational databases by bor-

rowing the advantages of the object-oriented method-

ologies and programming languages like inheritance and

encapsulation to enable complex objects to be normally

managed (Kim, 1990; Rumbaugh et al., 1991; Mok,
2002). But, their shortcomings have arisen in web-based

applications, which require resources to be managed in

an open, distributed, platform-irrelevant and content-

based way. In data warehousing and OLAP area, the

multi-dimensional data model was used (Han and

Kambr, 2000), but it is a read-only model so could not

meet the needs of most Internet applications where re-

sources are frequently operated.
* Fax: +86-1062567724.

E-mail address: zhuge@ict.ac.cn (H. Zhuge).

0164-1212/$ - see front matter � 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0164-1212(03)00058-X
To uniformly, normally and effectively manage ver-

satile Web resources has become one of the key issues of

the next-generation Web. The Semantic Grid VEGA-

KG is our newly proposed mechanism for sharing and
managing versatile web resources (Zhuge, 2002a–d). It

absorbs the ideal of the Grid (http://www.gridfo-

rum.org) and the standards of the semantic web (http://

www.semanticweb.org; Hendler, 2001) and adopts the

new resource management model and new communi-

cation platform. VEGA-KG has two key components:

(1) a resource space model (RSM) that is used for uni-

formly specifying and organizing resources in normal
forms; and (2) a uniform resource-using mechanism that

enables users to conveniently use resources in the re-

source space.

The RSM can uniformly specifying and managing

versatile Web resources in form of information,

knowledge and services (Zhuge, 2002c). Information

resources refer to various types of e-files that can be

transmitted through the Internet, and can be read or felt
directly or indirectly. Knowledge resources refer to the

concepts, axioms, rules, or methods that can be repre-

sented in a certain machine-understandable form.

Knowledge can be generated from understanding the

http://www.gridforum.org
http://www.gridforum.org
http://www.semanticweb.org
http://www.semanticweb.org
mail to: zhuge@ict.ac.cn

72 H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81
information resources or generalizing human experi-

ence. Service resources refer to the re-usable processes

for performing tasks, solving problems, or processing

information or knowledge resources.

A RSM has three schemas: a user-view schema, a

logical-level schema and a semantic-web view schema.
The user-view schema is a two-dimensional space re-

flecting the users’ view of the entire resource space. It

can take the form of a ‘‘resource browser’’ (Zhuge,

2002d). The logical-level schema (i.e., the logical-level

resource space) is an n-dimensional resource space, re-

flecting a universal view of the resource space. The se-

mantic view schema is a semantic-based representation

and organization mechanism of the resources.
The characteristics of the RSM require a special de-

sign method to assist designers to carry out resource

space design. Before presenting the design method, we

first introduce the main notion and basic content of the

RSM.
2. Resource space model, RSM

The RSM is based on the following methods and

viewpoints:

(1) Uniform resource abstraction. Mapping versatile re-

sources (information, knowledge and service) into

a uniform semantic space. The proposed method

use a uniform set of attributes to informally describe
resources.

(2) Resource partition. Resources could be partitioned

in a given domain.

(3) Uniform resource operation. Resources can be oper-

ated by a uniform set of operations.

(4) Universal resource view. Users could operate any re-

sources distributed on the whole Internet.

A set of common attributes can be generalized from

versatile resources: {name, author, owner, abstract, ver-

sion, location, privilege, access-approach, effective-dura-

tion, related material}, where the abstract means by the

content abstraction of information and knowledge, or

the function description of a service, it can be formal or

informal. The access privilege includes three types: (a)

public, any user can access to it; (b) group, only group
members can access to it; and (c) private, only the author

can access to it.

The basic concepts and notations are defined as fol-

lows:

1. A resource space is an n-dimensional space where

every point uniquely determines one resource or a set

of inter-related resources, denoted as RSðX1;X2; . . . ;
XnÞ or just by name RS in simple. Xi is the name of

an axis. Xi ¼ hCi1;Ci2; . . . ;Cini represents an axis with
its coordinates and the order between them. C de-

notes the coordinate name in form of a noun or a

noun phrase. Any name corresponds to a formal or

an informal semantic definition in its domain onto-

logy.

2. A coordinate C represents a class of resources, de-
noted as RðCÞ. A coordinate C is called independent

from another coordinate C0 if C is neither the syn-

onym nor the near-synonym of C0 in the discussion

domain ontology.

3. Two axes are called the same if their names are the

same and the names of all the corresponding coordi-

nates are the same in a discussion domain ontology.

4. If two axes X1 ¼ hC11;C12; . . . ;C1ni and X2 ¼ hC21;
C22; . . . ;C2mi have the same axis name but have dif-

ferent coordinates, then they can be merged into

one: X ¼ X1 [X2 ¼ hC11;C12; . . . ;C1n;C21;C22; . . . ;
C2mi whose order consists with the order of hC11;
C12; . . . ;C1ni and hC21;C22; . . . ;C2mi.

5. An axis X can be split into two axes X 0 and X 00 by di-

viding the coordinate set of X into two: the coordi-

nate set of X 0 and that of X 00, such that X ¼ X 0 [X 00.
Definition 1. Let X ¼ ðC1;C2; . . . ;CnÞ be an axis and C0
i

be a coordinate at another axis X 0, we say that X fine
classifies C0

i (denoted as C0
i=X) if and only if:

1. RðC1Þ \ RðC0
iÞ 6¼ NULL, RðC2Þ \ RðC0

iÞ 6¼ NULL, . . . ;
and RðCnÞ \ RðC0

iÞ 6¼ NULL;

2. ðRðC1Þ \ RðC0
iÞÞ \ ðRðC2Þ \ RðC0

iÞÞ \

 \ ðRðCnÞ
\RðC0

iÞÞ ¼ NULL; and

3. RðC1Þ \ RðC0
iÞ [RðC2Þ \ RðC0

iÞ [

 [RðCnÞ
\RðC0

iÞ ¼ RðC0
iÞ hold.

As the result of the fine classification, RðC0Þ is clas-
sified into n categories: RðC0

i=X Þ ¼ fRðC1Þ \ RðC0
iÞ;

RðC2Þ \ RðC0
iÞ; . . . ;RðCnÞ \ RðC0

iÞg.

Definition 2. For two axes X ¼ ðC1;C2; . . . ;CnÞ and

X 0 ¼ ðC0
1;C

0
2; . . . ;C

0
mÞ, we say that X fine classifies X 0

(denoted as X 0=X) if and only if X fine classifies

C0
1;C

0
2; . . . ;C

0
m.

Definition 3. Two axes X and X 0 are called orthogonal
with each other (denoted as X ? X 0) if X fine classifies X 0

and vice versa, i.e., both X 0=X and X=X 0 hold.

In order to answer the question of what is a good

design of the resource space, we define the following

three normal forms of the resource space.
Definition 4. The first-normal-form of a resource space is

a resource space and there does not exist name dupli-

cation between coordinates at any axis. The second-
normal-form of a resource space is a first-normal-form

H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81 73
and for any axis, any two coordinates are independent

each other. The third-normal-form of a resource space is

a second-normal-form and any two axes of it are or-

thogonal with each other.

Based on the above definitions, operations on the
resource spaces can be defined.

Characteristic 1. Let jRSj be the number of the di-

mensions of the RS. If two resource spaces RS1 and

RS2 store the same type of resources and they have n
(nP 1) common axes, then they can be joined together

as one RS such that RS1 and RS2 share these n
common axes and jRSj ¼ jRS1j þ jRS2j � n. RS is
called the join of RS1 and RS2, denoted as

RS1
RS2) RS.

If RS is formed by joining RS1 and RS2, then RS1
and RS2 are called the subspaces of RS. The join op-

eration will generate some new subspaces whose axes are

not orthogonal each other, i.e., there exist meaningless

correspondence between the coordinates of two axes. So
coordinate reinterpretation is required in these new

subspaces in this case.

Definition 5. Assume X ¼ ðC1; . . . ;CnÞ and X 0 ¼
ðC0

1; . . . ;C
0
mÞ are two axes of a new subspace that is

generated by the join operation, and X is not orthogonal

with X 0. The coordinate reinterpretation is to find a new

partition (i.e., a new set of coordinates (C00
1 ; . . . ;C

00
n) of X)

on X such that X ¼ ðC00
1 ; . . . ;C

00
n Þ ? X 0 ¼ ðC0

1; . . . ;C
0
mÞ.

The reinterpretation makes an axis to be the function

of the subspaces: X ðsubspaceÞ ¼ ðC1; . . . ;CnÞ, where the
subspace is one of the subspaces that X participates in. If

the coordinate reinterpretation does not carry out, the

new resource space constructed by the join operation

can also play the role of forming the universal view of
resources. But only those meaningful subspaces could

support correct resource retrieval.

Characteristic 2. A resource space RS can be disjoined
into two resource spaces RS1 and RS2 (denoted as

RS) RS1
RS2) that store the same type of resources

as that of RS such that they have n (16

n6 minðjRS1j; jRS2jÞ) common axes and jRSj � n dif-
ferent axes, and jRSj ¼ jRS1j þ jRS2j � n.

Characteristic 3. If two resource spaces RS1 and RS2

store the same type of resources and satisfies: (1)

jRS1j ¼ jRS2j ¼ n; and (2) they have n� 1 common

axes, and there exist two different axes X1 and X2 satisfy

the merge condition, then they can be merged into one

RS by retaining the n� 1 common axes and adding a
new axis X ¼ X1 [X2. RS is called the merge of RS1 and

RS2, denoted as RS1 [RS2) RS, and jRSj ¼ n.
Characteristic 4. A resource space RS can be split into
two resource spaces RS1 and RS2 that store the same

type of resources as that of RS and have jRSj � 1

common axes by splitting an axis X into two: X 0 and X 00,

such that X ¼ X 0 [X 00. This split operation is denoted as

RS) RS1 [RS2.

Based on the proposed model, we have designed an

SQL-like resource operation language as introduced in

Zhuge (2002a). A prototype of the relevant program-

ming environment has been implemented (http://kg.ict.

ac.cn).
3. Method and strategy for resource space design

The design process of a resource space consists of the

following four steps: resource analysis, top-down re-
source partition, design two-dimensional resource spaces,
and join between resource spaces.

3.1. Resource analysis

Resource analysis is to determine the application

scope, survey the resources need to be managed, and

then specify all the resources in a resource dictionary
(RD). Its basic functions are to help designers to specify

resources, store resources, and enable designers to edit

resources. Resources in the RD form the source of a

local resource space in the discussed application. The

XML is eligible for specifying the structural character-

istic of resources. The following is a typical XML-based

resource representation.

<RD>

<resource1>

<name>name1</name>
<author>author1</author>

<owner>owner1</owner>

<abstract>abstract1</abstract>

<version>version1</version>

<location>location1</location>

<privilege>privilege1</privilege>

<access-approach>access-approach1<access-

approach>
<effective-duration>time-duration1</effective-

duration>

<related-material>related-material1</related-

material>

</resource1>

.
<resourcen>

<name>namen</name>
<author>authorn</author>

<owner>ownern</owner>

<abstract>abstractn</abstract>

http://kg.ict.ac.cn
http://kg.ict.ac.cn

74 H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81
<version>versionn</version>

<location>locationn</location>

<privilege>privilegen</privilege>

<access-approach>access-approachn<access-

approach>

<effective-duration>time-durationn</effective-
duration>

<related-material>related-materialn</related-

material>

</resourcen>

</RD>

The RD can be managed by using the XML query

languages or the other query languages like the SQL

(ANSI, 1986; Bocy, 1975). The repository techniques
like inexact retrieval approaches can be used to enhance

the effectiveness of resource management (Zhuge, 1998,

2000). The role of the RD is similar to that of the data

dictionary used for establishing relational databases

except for the following two aspects.

(1) The final aim of the RD is to form the axes of re-

source space through defining resource classification
hierarchy.

(2) The resources in the RD are uniformly specified.

Fig. 1 shows the interface of a RD tool. The dictio-

nary consists of a raw repository and a fine repository.

The newly input resources are stored in the raw repos-

itory. The dictionary includes the following operations

realized by the buttons on the top-portion:

(1) Open, create a new chapter or open an existing chap-

ter of the given repository;

(2) Append, append a new resource to the given reposi-

tory;

(3) Edit, edit the existing resources in the given reposi-

tory;

(4) Consistency checking, check the semantic consis-
tency among the resources (e.g., consistency among
Fig. 1. Interface of the r
rules) in the given repository according to the re-

sources in the fine repository and the designer’s

judgment;

(5) Redundancy checking, check the redundancy in the

given repository according to the fine repository, on-

tology and the designer’s judgment, and then delete
the redundant resources;

(6) Classification, classify resources in the given reposi-

tory according to the specialization relationship

(e.g., the is-part-of relationship) between resources;

and

(7) Save, store the current editing resources into the

given repository. Only those resources that have

passed the consistency checking and redundancy
checking could be stored in the fine repository.

The specialization relationship between resources

can be determined according to: the existing tax-

onomy, the existing classification standard, the

available domain ontology and the users’ determi-

nation.

3.2. Top-down resource partition

Different designers may have different resource par-

tition solutions, so a uniform viewpoint on resource

partition is needed. The first step to reach a common

viewpoint is to reach a common top-level resource

partition agreement. Human, information and natural (or
artificial) object are three key factors of human society,

which can be regarded as the top-level resource partition
of human society. The top-level resource partition of a

domain can be regarded as a special case of the partition

of human society. For example, the top-level resources

of an institute’s resources can be classified as three in-

dependent categories: human resources, information re-
sources, and service resources (including facilitates).

Each category can be refined top-down until the cate-

gory is small enough to serve for domain applications.
Fig. 2 shows an example of top-down resource partition.
esource dictionary.

Is-part-of

Is-part-of Is-part-of

Is-part-ofIs-part-of

Inherit

Domain

Level Human resources Information resources Facilitate resources

Student Staff Personal Research Office

Teaching

Staff

Support

Staff

Management

Staff

Machine

Network

Human Information Natural/Artificial objects
Universal

Level

PC Printer

Fig. 2. An example of top-down resource partition.

H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81 75
3.3. Design two-dimensional resource spaces

People can better manage two-dimensional spaces

than high-dimensional spaces. So we can first design a

set of two-dimensional resource spaces then consider
joining them into an entire resource space. The design

process includes the following steps.

(1) Determine the number of resource spaces. The num-

ber of resource spaces can be determined according

to the number of the top-level resource categories at

the domain level.

(2) Determine axes names. The axes names can be deter-
mined according to the resource categories at the

universal level or domain level. An axis name reflects

a category of the domain-level partition of re-

sources.

(3) Determine the first-level coordinate names. Each co-

ordinate reflects one of the categories of the super-

category determined by the axis.

(4) Determine the coordinate hierarchies. For each first-
level coordinate, determine its low-level coordinates
Fig. 3. Generate two-dimens
top-down until the basic category according to the

resource partition hierarchy.

(5) Check independency between coordinates. Check in-

dependency between coordinates at all coordinate

levels. In case the independency is not satisfied, re-

consider resource partition at this level and then ad-
just coordinates.

(6) Check orthogonal relationship between axes. In case

the orthogonality is not satisfied, re-consider the co-

ordinate settings, and then adjust the relevant coor-

dinates.

According to the above design process, we can con-

struct two resource spaces as shown in Fig. 3 for the
resource partition example of Fig. 2.

3.4. Join between spaces

In order to obtain the effect of the universal resource

view, we need to join the generated two-dimensional

spaces. The condition of the join needs to be checked

according to Characteristic 1 introduced in Section 2.
For example, the two resource spaces of Fig. 3 share a

common axis. So they can be joined into a three-di-

mensional resource space as shown in Fig. 4. The join

operation will generate new two-dimensional spaces. In

the newly formed two-dimensional space: (information,
facilitate), the coordinates of the information axis need

to be reinterpreted according to the coordinates at the

facilitate axis. For example, PersonalInfor and Re-
searchInfor can be reinterpreted as upgrade-record and

function-specification. Therefore, the coordinates of the

‘‘information’’ axis are the function of two subspaces:

(human, information) and (information, facilitate), i.e.,

Information ((human, information))¼ (PersonalInfor, Re-
searchInfor) and Information ((information, facili-
tate))¼ (upgrading-record, function-specification).
ional resource spaces.

Fig. 4. A three-dimensional resource space constructed by joining two

two-dimensional spaces.

76 H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81
3.5. Design strategy 1: make use of reference resource

space

The reference resource space is two-dimensional:

RS ¼ ðcategory; levelÞ. The category dimension is the

vertical partition of resources. A coordinate of the cat-

egory axis represents a certain type of category, which
can include several subcategories, and each subcategory

can further include several smaller subcategories. A

category together with its all-level subcategories consti-

tutes a category hierarchy. So the coordinates of the

category axis should be designed as scalable because

people may concern resources across different catego-

ries. Except for the basic subcategories, each coordinate

of the horizontal axis can be drilled down onto a set of
low-level coordinates, which can be then drilled down

again or rolled back up to its up-level coordinates. The

top-level coordinates of the horizontal axis are the roots

of all the category hierarchies.
Fig. 5. The method for designi
The level dimension is a horizontal partition of re-

sources. A coordinate of this dimension represents a

level of a certain type, e.g., a granularity level or an

abstraction level. Each level can be further a coordinate

hierarchy like the category axis. The order between the

levels can be designed as a bottom-up support rela-
tionship. For example, we have designed a knowledge

space with the following four knowledge levels: concept
level, axiom level, rule level, and method level, where the
low-level knowledge resources can provide a certain

support to the high-level knowledge resources (Zhuge,

2002a).

3.6. Design strategy 2: using abstraction and analogy

strategy during design process

Abstraction and analogy are human problem-solving

skills and strategies. Abstraction is usually used in

combination with analogy. They can be applied to raise

the efficiency of software process (Zhuge et al., 1997).

Similarly, establishing abstraction and analogy rela-

tionship between the existing (reference) resource spaces
and the new resource space is an experience-based way

to design a new resource space. Fig. 5 graphically shows

the method for designing a new resource space by

analogous to the experience. The designers could get the

support from the tool level, the method level, the model

level, and the experience level when solving the problem

of designing a new resource space for the new domain.

3.7. Design tools: independency checking tool and orthog-

onality checking tool

The independency checking tool (ICT) is to assist de-

signers to check the independency between the coordi-

nates of the resource space according to the synonym

relationship between coordinates in the context of
ng a new resource space.

H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81 77
certain domain ontology. The fine repository of the RD

and domain ontology are the basis of determining the

independency between two coordinates. Designers also

need to participate the judgment in case automatic de-

termination is difficult to carry out.

The orthogonality checking tool (OCT) is to check the
orthogonal relationship between the axes of the resource

space according to Definitions 1–3. Designers also need

to participate the judgment in case automatic determi-

nation is hard. The independency checking should carry

out before the checking of orthogonality.
Fig. 7. A relational table with two keys can be transformed to a three-

dimensional resource space.
4. Case study: use RSM to manage relational tables

A relational table can be transformed to a RSM. A

relational table consists of one or several keys and a set

of attributes dependent on the key(s). It can be trans-

formed to a RSM with a key dimension and an attribute

dimension denoted as follows: Table1ðKey;A1;
A2; . . . ;AnÞ) RSMðKey;AðA1; . . . ;AnÞÞ. The coordi-

nates of the attribute dimension are the attributes, and
the coordinates of the key dimension are the values of

the key as shown in Fig. 6.

Let us first consider a first-normal-form table with

one key: Table1ðKey;A1;A2; . . . ;AnÞ, and we can trans-

form it to RSMðKey;AðA1; . . . ;AnÞÞ. Since any attribute

is atomic in a first-normal-form relational table, so there

does not exist name duplication between A1;A2; . . . ;An,

and they are independent each other, so it satisfies the
first-normal-form and the second-normal-form of the

corresponding RSM.

A second-formal-form relational table should guar-

antee any attribute completely depends on the Key, i.e.,

Key ! A1;A2; . . . ;An, this implies that the key’s values

constitute a classification of Aiði ¼ 1; 2; . . . ; nÞ and Ai

constitutes a classification of the Key, so the key is or-

thogonal with the attributes. Hence, it is the third-nor-
mal-form RSM.

In case a table has more than one key, it can be

transformed into a RSM with an attribute dimension
Attribute

Valuen

Value1

Value2

Fig. 6. The resource space for managing a relational table.
and the other dimensions for the keys. The coordinates

of a key dimension are the key values. For example, a

table with two keys can be transformed to a three-

dimensional resource space: Table2ðKey1;Key2;A1;A2; . . .,
AnÞ) RSMðKey1;Key2;AðA1; . . . ;AnÞÞ, as shown in

Fig. 7. According to Characteristic 2, this three-dimen-
sional space can be split into two-dimensional resource

spaces each of which has only one key-dimension. Ac-

cording to the transitivity of orthogonal relationship

between axes, we have the following conclusion.

Lemma 1. If a table satisfies the first/second/third-
normal-form of relational data model then it can be
transformed to a RSM that satisfies the first/second/third-
normal-form.

The RSM can manage multiple relational tables by

using a three-dimensional table as shown in Fig. 8,

where the table-name dimension denotes all the tables

that need to be managed. Each coordinate at the table-

name dimension corresponds to a two-dimensional
Fig. 8. Manage multiple tables by using a three-dimensional resource

space.

78 H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81
space slice with a key dimension and an attribute di-

mension that represent a relational table.
5. Applications

5.1. Application 1: design knowledge space, information

space and service space

As an application of the proposed model and the

design method, we have designed a knowledge space, an

information space and a service space, and used them in

the Knowledge Grid, the Information Grid and the

Service Grid respectively for realizing knowledge shar-
ing, information sharing and service sharing across the

Internet. Currently these platforms are available for

public use at http://kg.ict.ac.cn.

The operation interface of the Information Grid, the

Knowledge Grid and the Service Grid are respectively

shown in Figs. 9–11, where the middle-portions show
Fig. 9. Interface of In

Fig. 10. Interface of K
the user-view schemas of the respective information

space, knowledge space and service space, which herein

is the same as the resource-space view schemas. The

semantic-web view schemas of these spaces are realized

by the XML. Information, knowledge and service re-

sources can be uniformly and accurately identified by
selecting the proper rectangle representing a point in the

space when carrying out operations. The inexact re-

trieval of services has been realized in the Service Grid.

The low-portion of Fig. 11 shows the interface for in-

exact service operations.

5.2. Application 2: reform ‘‘ACM Computing Classifica-

tion System’’

We have used the proposed approach to reform the

HTML-based ‘‘ACM Computing Classification Sys-

tem’’ into a normalized three-dimensional information

space: (Category, Publication, Letter), which is graphi-

cally shown in Fig. 12. The space satisfies the third-
formation Grid.

nowledge Grid.

http://kg.ict.ac.cn

Publication

Letter

Web Page

Proceeding

Category
A KB

A

Z

B

Journal

Book

C

Fig. 12. A three-dimensional information space for the ‘‘ACM Com-

puting Classification System’’.

Fig. 13. A two-dimensional information space for uniformly and

normally managing bio-information.

Fig. 11. Operation interface of Service Grid.

H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81 79
normal-form according to Definition 4. The category

axis contains 11 categories marked by the letters from

‘‘A’’ to ‘‘K’’, each of which corresponds to a coordinate

hierarchy. Each coordinate at the category axis corre-

sponds to a two-dimensional slice (Publication, Letter),
so users can retrieve the required information according

to the publication types and/or the letter sequence in the

given category. This feature is not provided by the
existing classification system. The proposed approach

enables information retrieval to carry out in a three-

dimensional space, which could better meet users’ needs.

For the purpose of raising the retrieval efficiency, we can

add a new axis: Hot-topic¼ (methodology, theory, ap-
plication, product) to refine the space.

5.3. Application 3: realize uniform management of bio-

information

We have also applied the proposed approach to re-

form the existing bio-information retrieval and man-
agement paradigm. Previously, the bio-information on

the web is managed by versatile databases developed by

different countries. Using the proposed method, all the

bio-information databases can be uniformly and nor-

mally specified. Bio-information could be managed by a

two-dimensional resource space as shown in Fig. 13,

where ‘‘PubMed’’, ‘‘Structure’’, ‘‘Genome’’ and ‘‘Pop-

Set’’ respectively stand for: biomedical literature, mac-
romolecular structure, complete genome assemblies, and

population study data sets. The introduced Information

Grid platform enables the globally distributed bio-in-

formation to be uniformly, normally and effectively

managed.

6. Comparisons

The differences between the RSM and the relational

database consist of the following aspects.

(1) The objects managed by the RSM can be structured

or semi-structured information, knowledge, and

Table 1

Design method comparison

No. Items Design method for RSM Design method for RDB

1 Analyzed object Resources Entity and relationship

2 Conceptual model No ER model

3 Semantic basis Partition Function dependency

4 Purpose of normal forms Raise preciseness of resource operations Raise correctness of data operations

5 Reference model Yes No

6 Data organization Hierarchy of top-down partitioning Flat table

7 Schemas User-view level, logical level, semantic-web view level Conceptual level, logical level, physical level

8 Assistant tools Resource dictionary, independency checking, or-

thogonal checking

Data dictionary

80 H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81
resources, while the RDBMS only manages the

atomic data;

(2) The data model of the RSM is a uniform coordinate

system, while the data model of the RDBMS is rela-

tional table;

(3) The normalization basis of the RSM is the indepen-

dent and orthogonal coordinate system, while the

normalization basis of the RDBMS is the function
dependence relationship. The above three differences

determine that the RSM concerns the contents (se-

mantics) of resources and the content-based classifi-

cation so supports content-based operation, but the

RDBMS concerns the attributes of the objects being

managed so supports attribute-based operation;

(4) The RSM enables a uniform and universal resource

view when operating resources, while the RDBMS
essentially supports the view of a single table. This

feature enables the RSM to uniformly share and

manage the Internet resources.

The major differences between the design methods for

the relational databases and the RSM include eight

items as shown in Table 1. The design method for the

RSM does not have the conceptual model so the expe-
rience and reference model play an important role

when designing a proper resource space. The hierarchi-

cal resource organization approach is in line with the

top-down resource partition and the ‘‘from general to

special’’ human thinking. The RSM is established at the

semantic web level, so it does not have the physical level

schema as the relational data model. The design of the

RSM concerns RD, independency checking of coordi-
nates, and orthogonal checking of axes. The design of

the relational database concerns the data dictionary and

the balance between the normal forms and the retrieval

efficiency with respect to the application domain.

The normalization basis of the proposed RSM is

based on the semantics of the resource classification,

while the normalization basis of the relational database

model is based on the semantics of the function depen-
dency between data fields. This difference requires the

RSM to have a special design method and tools. On the

other hand, an effective and mobile resource manage-
ment model should have multiple semantic levels. To

investigate the resource management model at the other

semantic levels is our ongoing work. The current XML-

based resource space representation approach could be

updated without affecting the proposed method with the

evolution of the semantic web (Decker, 2000; Hendler,

2001; McHraith et al., 2001; Klein, 2001).
7. Concluding remarks

The paper first introduces the RSM for uniformly

managing versatile web resources and then proposes the

method for designing resource spaces. The design

method integrates the assistant tools, the experience-

based design process and strategy, and the reference

model of the RSM. This investigation has also reached

the following conclusions: (1) a relational table can be

transformed to a resource space; (2) the transformation
can keep the normal form correspondence between the

relational model and the RSM; (3) a three-dimensional

resource space can manage multiple relational tables;

and (4) the application width of the RSM is wider than

that of the relational data model. Applications in man-

aging knowledge, information and service resources

show that the proposed model and design method are

feasible.
Acknowledgements

This work was supported by the National Science

Foundation and the National Basic Research Plan of

China.
References

ANSI, 1986. The Database Language SQL. Document ANSI X3.315.

Bachman, C., 1974. The data structure set model. In: Proceedings of

the ACM SIGMOD, Debate on Data Model: Data Structure Set

Versus Relation.

Bocy, R. et al., 1975. Specifying queries as relational expressions.

Communications of the ACM 18, 621–628.

H. Zhuge / The Journal of Systems and Software 72 (2004) 71–81 81
Codd, E.F., 1970. A relational model of data for large shared data

banks. Communications of the ACM 13, 377–387.

Decker, S. et al., 2000. The semantic web: the roles of XML and RDF.

IEEE Internet Computing (Sep/Oct), 63–74.

Han, J., Kambr, M., 2000. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers. Available from <http://

www.mkp.com/>.

Hendler, J., 2001. Agents and the semantic web. IEEE Intelligent

Systems 16 (2), 30–37.

Kim, W., 1990. Introduction to Object-oriented Databases. MIT Press,

Cambridge.

Klein, M., 2001. XML, RDF, and relatives. IEEE Internet Computing

(March/April), 26–28.

McHraith, S.A., Son, T.C., Zeng, H., 2001. Semantic web services.

IEEE Intelligent Systems (March/April), 46–53.

Mok, W.Y., 2002. A comparative study of various nested normal

forms. IEEE Transactions on Knowledge and Data Engineering

14, 369–385.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.,

1991. Object-oriented Modelling and Design. Prentice-Hall.

Zhuge, H., 1998. Inheritance rules for flexible model retrieval. Decision

Support Systems 22, 379–390.

Zhuge, H., 2000. A problem-oriented and rule-based component

repository. Journal of Systems and Software 50, 201–208.

Zhuge, H., 2002a. A knowledge grid model and platform for global

knowledge sharing. Expert Systems with Applications 22, 313–320.

Zhuge, H., 2002b. A knowledge flow model for peer-to-peer team

knowledge sharing and management. Expert Systems with Appli-

cations 23, 23–30.
Zhuge, H., 2002c. VEGA-KG: A way to the knowledge web. In: Poster

Proceedings of the 11th International World Wide Web Confer-

ence, Honolulu, Hawaii, USA, May 7–11. Available from <http://

www2002.org>.

Zhuge, H., 2002d. Distributed team knowledge management by

incorporating knowledge flow with knowledge grid. In: Proceed-

ings of the Second International Conference on Knowledge

Management, Graz, Austria, July, pp. 218–223.

Zhuge, H., Ma, J., Shi, X., 1997. Analogy and abstract in cognitive

space: a software process model. Information and Software

Technology 39, 463–468.

Hai Zhuge is a professor at the Institute of Computing Technology,
Chinese Academy of Sciences. His research concerns the management
and computing issues of the next-generation Web, including Semantic
Grid, Knowledge Grid, Knowledge Flow, component-based system
and process construction, cooperative and cognitive information sys-
tems and decision-making in the context of the next-generation Web.
He early proposed the notions and models of the Knowledge Grid,
Intelligent Semantic Grid, and Knowledge Flow Management. He is
now the leader of the China Knowledge Grid project SVEGA-KG,
which includes 20 team members. He is playing the editorial roles of
several international journals and served as the program committee of
a number of international conferences. He is the author of one book
and over 50 papers appeared mainly in leading international confer-
ences and international journals such as: International World Wide
Web Conference, Communications of the ACM, IEEE Intelligent Sys-
tems, IEEE Transactions on Systems, Man, and Cybernetics, Computing
in Science and Engineering, Information and Management, Decision
Support Systems, Journal of Systems and Software, Expert Systems
with Applications, Knowledge-based Systems, Information and Software
Technology, and Lecture Notes in Computer Science.

http://www.mkp.com/
http://www.mkp.com/
http://www2002.org
http://www2002.org

	Resource space model, its design method and applications
	Introduction
	Resource space model, RSM
	Method and strategy for resource space design
	Resource analysis
	Top-down resource partition
	Design two-dimensional resource spaces
	Join between spaces
	Design strategy 1: make use of reference resource space
	Design strategy 2: using abstraction and analogy strategy during design process
	Design tools: independency checking tool and orthogonality checking tool

	Case study: use RSM to manage relational tables
	Applications
	Application 1: design knowledge space, information space and service space
	Application 2: reform ``ACM Computing Classification System''
	Application 3: realize uniform management of bio-information

	Comparisons
	Concluding remarks
	Acknowledgements
	References

