Completeness of Query Operations on Resource Spaces*

Hai Zhuge and Erlin Yao
China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, P. R. China
zhuge@ict.ac.cn; alin.yao@kg.ict.ac.cn

Abstract
A great variety of languages can be designed by different people for different purposes to operate resource spaces. Two fundamental issues are: can we design more operations in addition to existing operations? and, how many operations are sufficient or necessary? This paper solves these problems by investigating the theoretical basis for determining how complete a selection capability is provided in a resource operation sublanguage independent of any host language. The result is very useful to the design and analysis of operating languages.

Keywords: Resource Space Model, query, operation, completeness, sufficiency, expressiveness.

1. Introduction

The Resource Space Model (RSM) is a semantic data model for effectively specifying, locating and managing resources based on normalized classification semantics.

A Resource Space is an n-dimensional space where every point uniquely determines one resource or a set of related resources. A resource space can be represented as $RS(X_1, X_2, \ldots, X_n)$ or RS in simple, where RS is the name of the resource space and X_i is the name of an axis [11]. Normal forms are proposed to ensure a good resource space design [10].

Fig. 1 is an example of 3-dimensional resource space. Coordinates on an axis constitute a classification on the axis, and axes further classify each other. Given a set of coordinates ($Year=2004$, $Area=Knowledge$ Grid, $Publisher=World$ Scientific), a set of resources (books) can be accurately located.

A number of operations of resource spaces, such as Join, Disjoin, Merge and Split, are defined in [10]. The principles for designing Resource Operation Language (ROL) of RSM are proposed in [12]. The theory on the relationship between the normal forms and the operations are developed in [12].

Fig. 1. A 3-dimensional Resource Space.

A great variety of languages could be designed by different developers for different purposes to query and update resource spaces. This paper investigates a theoretical basis which can be used to determine how complete a selection capability is provided in a proposed resource sublanguage independent of any host language in which the sublanguage may be embedded. We especially concern: are the defined operations sufficient and how many operations are necessary?

Relational algebra and calculus are used in the relational data model. The relational algebra is a collection of operations on relations, and a query language could be directly based on it. There are eight operations defined in the relational algebra, they are extended Cartesian product, traditional set operations (union, intersection and difference), projection, join, division and selection [5]. The relational calculus is an applied predicate calculus which may also be used in
the formulation of queries on any database consisting of a finite collection of relations in a simple normal form. A data sublanguage (called ALPHA), established directly on the relational calculus, was informally described in [6]. The equivalence of relational algebra and relational calculus was proved in [9]. An algebra or calculus is relationally complete if, given any finite collection of relations \(R_1, R_2, \ldots, R_N \) in normal form, the expressions of the algebra or calculus permit definition of any relation definable from \(R_1, R_2, \ldots, R_N \) by alpha expressions [7]. A relational database language SQL (Structured Query Language) based on the relational algebra and calculus was proposed [1, 2, 3, 4].

The relational table in relational data model is based on attributes of entities and their functional dependence. Data are normalized in flat tables. While, the Resource Space Model is based on normalized classifications. Resources are normalized in multi-dimensional spaces where coordinates can be hierarchical. So new query languages are needed for querying resource spaces.

2. Completeness of Resource Space Operations

2.1. Basic Idea

Suppose \(S \) is the discussed domain, an operation \(\omega \) on \(S \) is a mapping \(\omega : S \times \cdots \times S \rightarrow S \), \(\omega(s_1, \ldots, s_n) = s \), where \(s \) and \(s_1, \ldots, s_n \) belong to \(S \). When \(n = 1 \), \(\omega \) is an unary operation like Disjoin and Split; when \(n = 2 \), \(\omega \) is a binary operation like Join and Merge [11]. In applications, we can only consider unary and binary operations.

Given two sets \(A \) and \(B \), if we only consider the set operations between them, then how many operations are sufficient? Experience tells us that three operations — union, intersection and difference are sufficient. But what is the reason? Can we define other operations?

As shown in Fig.2, \(A \) and \(B \) are divided into three parts according to the distribution of their elements (here we do not consider the simpler cases where some parts are empty). Part 1 consists of elements which are in \(A \) but not in \(B \). Part 2 consists of elements which are both in \(A \) and \(B \). Part 3 consists of elements which are in \(B \) but not in \(A \). If the empty set \(\emptyset \) is also considered as a result, then there are totally \(2^3 = 8 \) required sets, which are: \{ \emptyset, Part 1, Part 2, Part 3, Part 1 and Part 2, Part 1 and Part 3, Part 2 and Part 3, Part 1 and Part 2 and Part 3 \}, which actually are: \{ \emptyset, A–B, A∩B, B–A, A, A⊕B, B, A∪B \}, where \(\oplus \) is called symmetric difference [8]. We can see that the operations set \(\{ \cup, \cap, \setminus, \oplus \} \) are sufficient, because from \(A \) and \(B \), these operations can get all the required results. Among these four operations, only \(\cup \) and \(\setminus \) are necessary, because \(\cap \) and \(\oplus \) can be represented by them: \(A \cap B = A \setminus (A \setminus B) \) and \(A \oplus B = (A \setminus B) \cup (B \setminus A) \).

This inspires us to explore the theoretical basis for the design and analysis of resource space query languages.

An operation set is called sufficient only when it can get all the required results, and an operation set is called necessary only when it is the smallest sufficient operation set.

2.2. Sufficient and Necessary Operations on Resource Space

Suppose two resource spaces \(RS_1 \) and \(RS_2 \) have the same number of dimensions, and the corresponding axes are the same under the same domain ontology. Then we can define the operations Union, Difference and Intersection as follows:

Operation 1. Union — The union of two resource spaces \(RS_1 \) and \(RS_2 \) is: \(RS_1 \cup RS_2 = \{(x_1, \ldots, x_n) | (x_1, \ldots, x_n) \in RS_1 \text{ or } (x_1, \ldots, x_n) \in RS_2 \} \), i.e., the result is a resource space with \(n \) axes consisting of resources in points in \(RS_1 \) or in \(RS_2 \).

Operation 2. Difference — The difference of two resource spaces \(RS_1 \) and \(RS_2 \) is: \(RS_1 \setminus RS_2 = \{(x_1, \ldots, x_n) | (x_1, \ldots, x_n) \in RS_1 \text{ and } (x_1, \ldots, x_n) \notin RS_2 \} \), i.e., the result is a resource space with \(n \) axes consisting of resources in points in \(RS_1 \) but not in \(RS_2 \).

Operation 3. Intersection — The Intersection of two resource spaces \(RS_1 \) and \(RS_2 \) is: \(RS_1 \cap RS_2 = \{ R(x_1, \ldots, x_n) | R(x_1, \ldots, x_n) \in RS_1 \text{ and } (x_1, \ldots, x_n) \in RS_2 \} \), i.e., the result is also a resource space with \(n \) axes consisting of resources in points in \(RS_1 \) and in \(RS_2 \).

![Fig. 2. An example for discussing the sufficiency of set operations](image-url)
Given two operations op_1 and op_2 on two resource spaces RS_1 and RS_2, we use $op_1(RS_1)$ to represent the result of operating RS_1 by unary operation op_1, and use RS_1, op_1, RS_2 to represent the result of operating RS_1 and RS_2 by binary operation op_2. Then, all the resource spaces we can get from the set $\{RS_1, RS_2\}$ by using the set $\{op_1, op_2\}$ can be listed as: $\{op_1(RS_1), op_1(RS_2), RS_1, op_2, RS_2, op_1(op_1(RS_2), op_1(RS_1), op_2(RS_2), op_2(RS_1)\}$. Then, the following definition can be given.

Definition 1. Given a set of resource spaces RSS and a set of operations OP on the resource spaces, RSS^{OP} denotes all the resource spaces that can be got from RSS by a sequence of operations in OP.

For example, for $RSS=\{RS_1, RS_2\}$, if $OP=\{\cup, \cap\}$, then $RSS^{OP}=\{RS_1, RS_2, RS_1 \cup RS_2, RS_1 \cap RS_2\}$; if $OP=\{\cup\}$, then $RSS^{OP}=\{RS_1, RS_2, RS_1 \cup RS_2\}$. This example is simple, but in many cases, it is not easy to compute RSS^{OP} given RSS and OP. For example, for $RSS=\{RS_1, RS_2\}$ and $OP=\{\cup\}$, one may think that $RSS^{OP}=\{RS_1, RS_2, RS_1 \cup RS_2\}$. But in fact, $RSS^{OP}=\emptyset, RS_1, RS_2, RS_1 \cup RS_2, RS_1 \cap RS_2\}$. Because $RS_1 \cap RS_2 = RS_1 \cup RS_2 = RS_1 \cap RS_2$, we get $RSS^{OP}=\{RS_1, RS_2, RS_1 \cup RS_2\}$.

It is clear that if $OP_2 \supseteq OP_1$, then $RSS^{OP_2} \supseteq RSS^{OP_1}$, which means that defining new operations can get more results. But the definition of new operations is infinite, then how many operations are sufficient enough? The inherent requirements of data model have decided the completeness of operations beforehand, when the defined operations set can meet the requirements of data model, then it can be called sufficient.

Intuitively, given any set of resource spaces RSS, if an operation set OP can get all the required results, then OP can be called sufficient. So the definition of a sufficient operation set can be given as follows:

Definition 2. An operation set OP of resource space is called sufficient, if for any set of resource spaces RSS, all required results are in RSS^{OP}.

Suppose an operation set OP_s is sufficient and OP_t is a real subset of OP_s, if $RSS^{OP_s} = RSS^{OP_t}$, then OP_t is also sufficient and the operations in OP_t are not necessary. Then we can give the definition of a necessary operation as follows:

Definition 3. An operation set OP of resource space is called necessary if OP_s is sufficient and there does exist a real subset OP_t of OP_s such that $RSS^{OP_s} = RSS^{OP_t}$.

For example, when we only consider the traditional set operations, the set $OP=\{\cup, \cap\}$ is sufficient but not necessary. Because for its real subset $OP=\{\cup\}$, from $RS_1 \cap RS_2 = RS_1 - (RS_1 - RS_2)$, we can get $RSS^{OP}=RSS^{OP_s}$. And the set $\{\cup, \cap\}$ is necessary because it is the smallest set which is sufficient in this sense.

3. Expressiveness of Different Query Languages

Definition 4. Let RS, RS_1 and RS_2 be resource spaces. Two unary operations are called equivalent to each other if $op_1(RS)=op_2(RS)$. Two binary operations are called equivalent to each other if $RS_1, op_1, RS_2, op_2, RS_2$.

For example, if we define a binary operation '*=' as follows:

$$*: RS_1, RS_2 = RS_1 \cap (RS_1 \cap RS_2)$$

Then, '*=' is equivalent to the operation '\cap', i.e., '*='\cap'. If two operations are equivalent to each other, they are the same from the perspective of mapping, so they are the same operation. As we can see, the operation '**=' is composed of operation '\cap', then we can say that operation '**=' can be represented by operation '\cap'. Then, we have the following definition.

Definition 5. Suppose OP is an operation set, a unary or binary operation op is called "can be represented by OP" if $op(RS)$ or $RS, op RS_2$ can be represented as an expression of OP.

For example, we have $RS_1 \cap RS_2 = RS_1 - (RS_1 - RS_2)$, so operation '\cap' can be represented by operation '-' . Equivalent and representation are two basic relations between operations discussed here.

The study of expressiveness of operations can answer problems like "whether the defined operations are sufficient". The expressiveness of operations is an abstract concept, it is difficult to be accurately defined or described. Here the comparison between expressiveness is given.

Intuitively, given any resource spaces RSS, if operation set OP_s can get more results than OP_t, then we can say that the expressiveness of OP_s is more stronger than OP_t. So a definition can be given as follows:

Definition 6. Given two operation sets OP_s and OP_t, the expressiveness of OP_s is called stronger or weaker than OP_t, denoted by $OP_s > OP_t$ (or $OP_s < OP_t$), if for any RSS, $RSS^{OP_s} \supseteq RSS^{OP_t}$ (or $RSS^{OP_s} \subseteq RSS^{OP_t}$) holds.
Here “the more results” does not mean the whole number of data, but the number of different results. For example, for \(RSS = \{ RS_1, RS_2 \} \), \(OP_s = \{ \cup, \cap \} \) and \(OP_t = \{ \cup, \cap \} \), we have \(RSS^{OP_s} = \{ RS_1, RS_2 \} \) and \(RSS^{OP_t} = \{ RS_1, RS_2, RS_1 \cup RS_2 \} \). The whole quantities of data are the resources included by space \(RS_1 \cup RS_2 \), but the operation set \(OP_s \) gets one more result \(RS_1 \cap RS_2 \), so we say that the expressiveness of \(OP_s \) is stronger than \(OP_t \).

Some characteristics of expressiveness of operations are given in the following.

Characteristic 1. Given two operation sets \(OP_s \) and \(OP_t \), both \(OP_s \supsetneq OP_t \) and \(OP_s \subsetneq OP_t \) may not hold.

For example, for \(RSS = \{ RS_1, RS_2 \} \), \(OP_s = \{ \cap \} \) and \(OP_t = \{ \cup \} \), we have \(RSS^{OP_s} = \{ RS_1, RS_2, RS_1 \cap RS_2 \} \) and \(RSS^{OP_t} = \{ RS_1, RS_2, RS_1 \cup RS_2 \} \). So \(RSS^{OP_s} \not\subseteq RSS^{OP_t} \) and \(RSS^{OP_t} \not\subseteq RSS^{OP_s} \), then both \(OP_s \supsetneq OP_t \) and \(OP_s \supsetneq OP_t \) do not hold, which means that we cannot say the expressiveness of which is stronger than the other.

Characteristic 2. Given two different operation sets \(\{ OP_s \} \) and \(\{ OP_t \} \), the expressiveness of them can be the same.

For example, for \(RSS = \{ RS_1, RS_2 \} \), \(OP_s = \{ \cup, \cap \} \) and \(OP_t = \{ \cup, \cap \} \), we have \(RSS^{OP_s} = \{ RS_1, RS_2, RS_1 \cap RS_2 \} \) and \(RSS^{OP_t} = \{ RS_1, RS_2, RS_1 \cup RS_2 \} \), so the expressiveness of them are the same.

Characteristic 3. Given two operation sets \(OP_s \) and \(OP_t \), if \(OP_s \supseteq OP_t \), then \(OP_s \supsetneq OP_t \).

Characteristic 4. If \(OP_s \supseteq OP_t \) and \(OP_s \supsetneq OP_t \), then \(OP_s \supsetneq OP_t \).

Characteristic 5. Given an operation set \(OP_s \), if \(OP_s \) is equivalent to or can be represented by some operations in \(OP_s \), then \(OP_s \supsetneq OP_t \).

Characteristic 6. If \(OP_s \supsetneq OP_t \), then \((OP_s \cup OP_t) = OP_s \).

Characteristic 6 shows that if newly defined operations can be represented by existing operations, then the expressiveness of operations does not increase in essence. This provides an approach for us to measure the expressiveness of a set of operations or semantic factors.

4. Design of Resource Operating Languages

4.1. Definition of Operations

Apart from the traditional set operations defined above, we can define the following operations.

Operation 4. Extended Cartesian Product — The Extended Cartesian Product of two resource spaces \(RS_1(x_{11}, \ldots, x_{1n}) \) and \(RS_2(x_{21}, \ldots, x_{2m}) \) is a resource space with \(n+m \) axes. The preceding \(n \) axes are the axes of \(RS_1 \) and the following \(m \) axes are axes of \(RS_2 \). If \(RS_1 \) has \(k_1 \) points and \(RS_2 \) has \(k_2 \) points, then the Extended Cartesian Product of \(RS_1 \) and \(RS_2 \) has \(k_1 \times k_2 \) points, we denote it as \(RS_1 \times RS_2 = \{ (x_{11}, \ldots, x_{1n}, x_{21}, \ldots, x_{2m}) \mid (x_{11}, \ldots, x_{1n}) \in RS_1 \) and \((x_{21}, \ldots, x_{2m}) \in RS_2 \} \).

Operation 5. Selection — It is for selecting the points that satisfying given conditions in the Resource Space \(RS \), denoted as \(\sigma_F \{ RS = \{ t \mid t \in RS \text{ and } F(t) = \text{true} \} \} \), where \(F \), a logical expression representing the selection conditions, has binary value ‘true’ or ‘false’. The logic expression \(F \) is composed of the logic operators \(\neg, \land \) and \(\lor \) connecting every arithmetic expression. In fact, the operation ‘selection’ is to select the points that make the logic expression \(F \) be true from the Resource Space \(RS \).

The operations Join, Disjoin, Merge and Split have been defined in [10] as follows:

Operation 6. Join — Let \(|RS| \) be the number of the dimensions of the \(RS \). If two resource spaces \(RS_1 \) and \(RS_2 \) store the same type of resources and have \(n \) \((n \geq 1)\) common axes, then they can be joined together as one resource space \(RS \) such that \(RS_1 \) and \(RS_2 \) share these \(n \) common axes and \(|RS| = |RS_1| + |RS_2| - n \). \(RS \) is called the join of \(RS_1 \) and \(RS_2 \), denoted as \(RS_1 \bowtie RS_2 \).

According to the above definition, all the resources in the result resource space \(RS \) come from \(RS_1 \) and \(RS_2 \) and can be classified by more axes. The Join operation provides an efficient method for the management of resources defined in different resource spaces.

Operation 7. Disjoin — A resource space \(RS \) can be disjoined into two resource spaces \(RS_1 \) and \(RS_2 \) that store the same type of resources as that of \(RS \) such that they have \(n \) \((1 \leq n \leq \min(|RS_1|, |RS_2|))\) common axes and \(|RS| - n \) different axes, and \(|RS| = |RS_1| + |RS_2| - n \) (denoted as \(RS_1 \cap RS_2 \)).

The Disjoin operation can clarify the classification of resources by separating large number of axes into two small ones. Both Join and Disjoin operations keep 1NF, 2NF and 3NF of Resource Space Model.

Operation 8. Merge — If two resource spaces \(RS_1 \) and \(RS_2 \) store the same type of resources and satisfy:

1. \(|RS_1| = |RS_2| = n \); and
2. they have \(n-1 \) common axes, and there exist two different axes \(X' \) and \(X'' \) satisfying
the merge condition, then they can be merged into one
RS by retaining the \(n-1\) common axes and adding a
new axis \(X'=X\cup X'\). RS is called the merge of RS1 and
RS2, denoted as \(RS_1\cup RS_2=RS\), and \(|RS|=n\).

Operation 9. Split — A resource space RS can be split
to two resource spaces RS1 and RS2 that store the
same type of resources as RS and have \(|RS|=1\)
common axes by splitting an axis \(X\) into two: \(X'\)
and \(X''\), such that \(X=X'\cup X''\). This split operation is
denoted as \(RS\Rightarrow RS_1\cup RS_2\).

By the split operation, the unconcerned coordinates
on a certain axis can be filtered out and only the
interesting coordinates are preserved.

4.2. Verification of Operations

To define a sufficient and necessary operation set is
only enough in theory. But in applications, some new
operations which can be represented by existing
operations will also be defined for the convenience of
expression or operation. For example, from the Join
operation, we can naturally introduce another useful
operation: Division. And we can define another
operation, we can naturally introduce another useful
expression or operation. For example, from the Join
operations will also be defined for the convenience of
operations which can be represented by existing

Proof. According to definition 4, we only need to
show that there exist infinite different operations which are not
equivalent to each other. We define a sequence of
operations \(\Theta_1, \Theta_2, \Theta_3, \ldots\) as:

\[
\begin{align*}
\Theta_1: & \quad rs_1 \Theta_1 rs_2 = (rs_1 \Theta_1 rs_2) \times (rs_1 \cap rs_2), \\
\Theta_2: & \quad rs_1 \Theta_2 rs_2 = (rs_1 \Theta_1 rs_2) \Theta_1 (rs_1 \Theta_1 rs_2), \\
\ldots & \\
\Theta_{i+1}: & \quad rs_1 \Theta_{i+1} rs_2 = (rs_1 \Theta_i rs_2) \Theta_1 (rs_1 \Theta_i rs_2), \\
\ldots &
\end{align*}
\]

From our definition, we have:

\[
rs_1 \Theta_2 rs_2 = (rs_1 \Theta_1 rs_2) \Theta_1 (rs_1 \Theta_1 rs_2)
= ((rs_1 \cup rs_2) \times (rs_1 \cap rs_2)) \Theta_1 ((rs_1 \cup rs_2) \times (rs_1 \cap rs_2))
= (((rs_1 \cup rs_2) \times (rs_1 \cap rs_2)) \cup ((rs_1 \cup rs_2) \times (rs_1 \cap rs_2)))
= rs_1 \Theta_2 rs_2.
\]

So we can see that \(\Theta_2 = \Theta_1 \times \Theta_1\). And we conjecture
that \(\Theta_i = \Theta_{i-1} \times \Theta_1\) for any \(i \geq 2\).

\[
rs_1 \Theta_i rs_2 = (rs_1 \Theta_{i-1} rs_2) \Theta_1 (rs_1 \Theta_{i-1} rs_2)
= (rs_1 \Theta_{i-1} rs_2) \cup (rs_1 \Theta_{i-1} rs_2) \times (rs_1 \Theta_{i-1} rs_2)
= (rs_1 \Theta_{i-1} rs_2) \times (rs_1 \Theta_{i-1} rs_2).
\]
Disjoin, Union, Difference and Intersection can get all the combinations of the coordinates of a single resource space RS_i. Then using the Extended Cartesian Product, we can get all the combinations of the coordinates of these finite resource spaces RS_1, RS_2, \ldots, RS_N.

In the proof process of theorem 2, we can see that the five operations: Selection, Disjoin, Union, Difference and Extended Cartesian Product are sufficient and necessary.

5. Conclusions

This paper investigates the completeness of resource space query languages, and establishes a theoretical basis for determining how complete a selection capability is provided in a proposed resource operation sublanguage. An operations set can be called sufficient only when it can get all the required results of the data model. In this sense, a necessary operations set is the smallest sufficient set. Based on this, we establish a framework to compare the expressiveness of different resource sublanguages. Finally, we design a set of resource query operations and verify their completeness. This result is significant in directing the design of a resource space operation sublanguage.

The proposed approach can be used in the study of the expressiveness and completeness of the interconnection semantics, for example, a set of primitive semantic links [13].

Acknowledgement: The authors thank all team members of China Knowledge Grid Research Group (http://www.knowledgegrid.net) for their help and cooperation.

6. References