
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413
Published online 14 September 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.867

Resource Space Grid:
model, method and platform

Hai Zhuge∗,†

China Knowledge Grid Research Group,
Key Lab of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China

SUMMARY

A Resource Space Grid is a virtual Grid that aims at effectively sharing, using and managing versatile
resources across the Internet. The kernel of the Resource Space Grid includes a Resource Space Model
(RSM) and a uniform Resource Using Mechanism (RUM). This paper presents the Resource Space Grid’s
core scientific issues and methodology, architecture, model and theory, design criteria and method, and
practice. A normal form theory is proposed to normalize the resource space—a coordinate system for
uniformly specifying and organizing resources. The RUM provides not only the end-users with an operable
resource browser to operate resources using the built-in Resource Operation Language (ROL), but also
the application developers with the ROL-based programming environment. The prototype platform based
on the proposed model and method has been implemented and used for sharing and managing resources
in distributed research teams. Operations on Resource Spaces can constitute the virtual communities of
Resource Space Grids—a platform independent resource sharing environment. Copyright c© 2004 John
Wiley & Sons, Ltd.

KEY WORDS: resource sharing; query language; Semantic Grid; Semantic Web; Web

1. INTRODUCTION

The World Wide Web—a global Web page repository—enables people to share information by means
of HTML, HTTP, search engines and browsers. The major advantage and the success of the Web is
easy—simple in architecture, usage mode and interface. The hyperlink enables ‘anything’ to link to
‘anything’ and leads to the scale-free characteristic [1]. However, Web pages are designed for humans
to read, not for software to manipulate meaningfully [2]. So it is hard for the Web to support complex
applications and effective information services. To overcome the shortcomings of the current Web,

∗Correspondence to: Hai Zhuge, China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China.
†E-mail: zhuge@ict.ac.cn

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 4 June 2003

Revised 27 October 2003
Accepted 13 November 2003

1386 H. ZHUGE

people have made efforts towards the next-generation Web. The Semantic Web, the Web Service and
the Grid are three of these efforts, which have attracted investment from many scientists and enterprises.

The main intention of the Semantic Web [3–6] is to enable the Web resources (e.g. Web pages)
to be understood by the resource usage and service mechanisms such as the search engines and
browsers. Current research on the Semantic Web focuses on ontology mechanisms and markup
languages such as RDF (Resource Description Framework), OIL (Ontology Inference Layer), and
DAML (DARPA Agent Markup Language). The XML-based RDF (http://www.w3c.org/rdf) defines
the machine-understandable semantics of the Web resources by the object-attribute-value model [7,8].
The RDF schema (RDFS) enhances the representation ability of the RDF by providing the means to
define the vocabulary, the class-based structure and the constraints for expressing the metadata about
Web resources. As the extension of the markup language, the approach for representing knowledge
in documents by extending the RDFS has been proposed [9]. OIL is the extension of RDFS through
the well-defined XML syntax based on the document type definition [10]. DAML is the extension of
the Web ontology to allow rules to be expressed within the languages [11]. Ontology can establish
a certain common understanding between information-processing mechanisms. It usually contains a
hierarchy of concepts of a domain and describes each concept’s crucial properties through an attribute
value. The WordNet (http://www.cogsci.princeton.edu/∼wn) is a kind of conceptual level ontology.
Researchers have developed assistant tools for the creation and management of ontologies [10].
Approaches for representing and using knowledge in documents and the frame-based SHOE (Simple
HTML Ontology Extensions) have been proposed [3,12]. Although these markup languages and
ontology mechanisms can realize semantic-level resource sharing to some extent, so far we still do
not have effective means to uniformly organize, accurately retrieve, and effectively manage globally
distributed resources according to semantics.

The Web Services are application mechanisms that interact with each other using the Web standards
for data definition and exchange (http://www.w3.org/XML/), message routing and remote method
invocation (http://www.w3.org/TR/SOAP/), service description (http://www.w3.org/TR/wsdl), and
services publication (http://www.uddi.org). The aim is to provide an open computing platform for the
development, deployment, interaction and management of globally distributed e-services, rather than
a passive repository where users primarily use it as the media of viewing and downloading content.
Web Services provide the possibility of running an application on distributed machines, many of
which the users neither own nor control. People can use Web Services as components to build their
own applications and services. However, current Web Services still lack effective means to manage
services.

Grid computing is the technology that enables a large-scale distributed computing system to carry
out the controlled sharing of computing resources. The concept of Grid computing appeared in the
1995 I-WAY experiment, where high-speed networks were used to connect high-end resources at
17 sites across North America [13]. The development of Grid computing led to the establishment
of the Grid forum in November 2000 (http://www.gridforum.org). Many systems that use the idea of
Grid computing have been implemented [14]. Nowadays, Grid computing has become a hot research
area and has attracted investment from many leading corporations.

From the architecture point of view, the computing Grid, the Web Service and the current Web
belong to the tightly controlled paradigm in architecture, where strong servers play the key role.
Peer-to-peer computing aims at the loosely controlled computing architecture, where a client can play
the role of a server and a server can also play the role of a client. The notion of peer-to-peer also exists

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1387

at the resource-sharing and knowledge-sharing level. A model for realizing tightly coupled peer-to-peer
team knowledge sharing and management was proposed in Zhuge [15].

The Semantic Web, the Web Service, the peer-to-peer, and the Grid focus on different aspects
of application demands. They should converge on the same final target in the long run, and each
area will benefit from the progress of other areas. For example, the extension of the Grid in
semantics and the extension of the Semantic Web in computation ability converge at the Semantic
Grid (http://www.semanticgrid.org). Actually, the current Grid architecture OGSA (Open Grid Service
Architecture) has shifted the orientation from computing to service. The Semantic Grid has become the
main architecture of the European e-science projects (http://mygrid.man.ac.uk/). However, the current
Semantic Grid still lacks fundamental theory and methodology support.

China has launched a national research project on the Semantic and Knowledge Grid [16]. Its core
technique is the Resource Space Grid—a virtual worldwide resource sharing and management
environment.

2. CORE SCIENTIFIC ISSUES AND RESEARCH METHODOLOGY

The general research aim of the Resource Space Grid is to solve three core scientific issues: normal
organize, semantic interconnect and dynamic cluster versatile resources across the Internet [16].
This paper focuses on the normal organization issue—how to abstract a disorder system and
then content-equivalently reconstruct it in a normal space to guarantee the correctness of resource
operations. An ideal approach is to seek a set of semantic normal forms to organize resources in the
form that could normalize the resource organization and eliminate redundant, disorder and useless
resources so as to guarantee the correctness and accuracy of resource operation, and realize complete
and effective resource sharing.

Our research methodology contains the following four sets of key notions.

(1) Virtualization, variety and uniformity. Virtualization requires that the future interconnect
environment should be platform independent and media independent. Variety has two meanings:
the first is that our research objects are versatile Web resources such as information, knowledge,
services and even Grid components; and, the second is the adoption of the principles and
methods of multiple disciplines such as system methodology, psychology and ecology, and
cross-disciplinary research. Research on future Web resources ferments a breakthrough in the
background that important progress has been made in relevant disciplines. Uniformity means
that versatile Web resources are managed and processed in a uniform and global view.

(2) Enabling intelligence, personality and humanity. The Grid platform should enable users and
resources to use resources in an intelligent, in-depth, flexible, personalized and humanized way.

(3) Global cooperation. Resources can actively cluster together through understanding the semantics
of demands and resources, and cooperate with each other to provide on-demand services.

(4) Activity, autonomy and adaptability. Resources can actively provide services. Communities in
the future interconnection environment should be assigned the right to autonomously control the
sharing process so as to raise the efficiency of sharing resources. Resource sharing and using can
adapt to the change of requirement and environment.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1388 H. ZHUGE

The rapid development of material science and communication technology enables the Internet to
transmit information faster and faster. It is just a time issue that the future Internet will work at a speed
several tens of thousand times the current speed, or much higher than that. This brings a scenario that
a long waiting time (e.g. 10 min) for the same amount of information exchange will then be as short
as several milliseconds or even shorter than that, so ordinary users will feel that information exchange
across the Internet is being carried out as in a single PC or a local network. This provides us with the
rationale to regard all the resources on the Internet as a huge resource repository. However, increasing
the speed and bandwidth could never catch up with the exponentially growing resources, and does
not solve semantic issues. If the semantics of versatile resources can be uniformly specified, then
Internet users can share and manage the resources in the repository by using a uniform operational
language, just as using SQL [17,18] to operate relational databases. Hence, we adopt the following
three strategies.

(1) Adopt the Semantic Web standard as the representation and interchange basis of resources.
This strategy enables resource sharing to be carried out on a mutually-understandable basis.

(2) Refer to the relational data model and the SQL when developing the resource management
model. The relational data model has a firm theoretical basis and has proved to be successful
since it was proposed in 1970. However, Web resources are complex, distributed, huge,
heterogeneous, and exponentially growing. So the relational data model is not eligible for
managing versatile resources on the Web, but we can learn from its theoretical structure. We also
need to make use of the syntax and semantics of the SQL to define the operation language.

(3) Make use of abstraction and analogy. This strategy encourages the resource space designers to
abstract common characteristics from versatile resources when organizing resources. It can also
help designers to create new resource spaces for applications using past experience.

3. GENERAL ARCHITECTURE

The general architecture of the Resource Space Grid mainly consists of the Resource Using Mechanism
(RUM) and the Resource Space Model (RSM), as shown in Figure 1. The RUM includes an operable
resource browser, a resource-utilize engine, a Resource Operation Language (ROL), a ROL-enactment
mechanism, and an application development environment. The operable resource browser provides
an easy-to-use interface for the end-users to select the proper resources and the proper operation, to
determine operation parameters, and then to submit the operation. The resource-utilize engine accepts
the submitted operation and then performs the operations according to the types of the resources to be
operated. The developers develop the application system with the help of the development environment,
which is supported partially by the Resource Space Grid and partially by other application development
tools. The ROL supports the end-users in carrying out one-step operation or supports application
developers to compose a resource operation program to realize an application system. The ROL not
only supports the application system to use resources but also helps the resource browser to operate
resources. The end-users can either use the application system to process domain applications or use a
resource browser to directly operate resources.

The universal resource space is the entire collection of local resource spaces. In order to correctly
and efficiently operate resources, we propose a RSM—a uniform coordinate system with independent

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1389

Legend: Support: ; Mapping:

System-level interoperation: ; Domain-level interoperation:

Local View
Universal View

Local RS

Universal RS

Resource-utilize Engine

Operable Resource Browser

End-Users

Uniform

Resource

Usage

Mechanism

Application

Development

Environment

Developer

Semantic

Resource

Space

Semantic Interconnection Platform

ROL Mechanism

Single Semantic

Image

Application

Systems

Local RS

Domain

Business

Entity Resources
Physical

Addresses

Figure 1. Architecture of the Resource Space Grid.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1390 H. ZHUGE

coordinates and orthogonal axes for accurately identifying resources. A resource space has the
following three schemas.

(1) A user-view schema (user level). A two- or three-dimensional resource space built in the resource
browser, which enables the end-users to conveniently locate and operate resources because it is
hard for end-users to deal with high-dimensional spaces.

(2) A universal-view schema (logical level). All the resources are located in an entire n-dimensional
space. A user-view schema is a slice (or a subspace) of the universal-view schema.

(3) A semantic-view schema (single semantic image level [19]). Versatile resources are expressed
in single semantic space by making use of the markup language of the Semantic Web
(e.g. the Resource Description Framework (RDF)), ontology mapping, or the Semantic Link
Network [20].

Every resource space has an identity and a logical location so that any client can easily access it.
A resource’s logical address can be a composition of its identity and coordinates. A resource has an
entity located at a physical address. One-to-one and onto mapping between the logical address and the
physical address enables the RUM to work at the semantic level.

4. RSM

4.1. Theory

The following common attributes can be abstracted from resources of versatile type.

(1) Name, an identifier for differentiating one resource from the other.
(2) Author, the creator’s name.
(3) Abstract, the content abstraction of information or knowledge resources, or the function

description of service resources. It can be in the form of natural language description, formal
description, or template.

(4) Version, the version number.
(5) Location, the logical address in the virtual environment and the corresponding entity’s residence

in the Internet.
(6) Privilege, it has three values: (a) public, any user can access the resource; (b) group, only group

members can access the resource; and (c) private, only the author can access the resource.
(7) Access-approach, the valid operations of the resource.
(8) Effective-duration, the life span of the resource.

Current research works on ontology support the reasonability of the following assumption used for
developing the RSM.

Assumption 1. An ontology service mechanism is available: Output = Ontology-Service(Input, k).
The ‘input’ parameter is a word or a word phrase. The second parameter is a variable with numerical
type used for controlling the output. If k = 0, the ontology service outputs a word set with the following
elements: the synonym(s), the abstract-concept(s), the specific-concept(s), and the instance(s) of the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1391

input word. If k = 1, the ontology service outputs a set with one more element, the near-synonym of
the input word.

Coordinates are the commonly used and efficient means to locate objects in a space. For example,
people use latitudes and longitudes to accurately locate a geographical place on a map—a two-
dimensional space. Establishing a resource space with the right axes and coordinates, we can accurately
store and retrieve resources according to coordinates. To differentiate resources in different resource
space, we use the space name to extend the resource name: Resource-name.Space-name.

Definition 1. A resource space is an n-dimensional space where every point uniquely determines one
resource or a set of related resources. A resource space has a name, a type, a logical location, and the
access privilege.

The uniqueness requires that the coordinate of each dimension should be defined independently.
In the following discussion, we use the following representations and notations: (1) a resource
space is represented by RS(X1,X2, . . . , Xn) or RS in simple terms, where RS is the name of
the resource space and Xi is the name of an axis. We use |RS| to denote the number of
dimensions of the RS, i.e. |RS| = n; and (2) Xi = {Ci1, Ci2, . . . , Cin} represents an axis with
its coordinates. C denotes the coordinate name in the form of a noun or a noun phrase. Any name
corresponds to a formal or an informal semantic definition in its domain ontology, like the WordNet
(http://www.cogsci.princeton.edu/∼wn/).

Definition 2. (1) Two axes are called the same if their names are the same and the names of all
the corresponding coordinates are the same. (2) If two axes X1 = {C11, C12, . . . , C1n} and X2 =
{C21, C22, . . . , C2m} have the same axis name but have different coordinates, they can be merged into
one: X = X1 ∪ X2, denoted as X1 ∪ X2 ⇒ X.

Characteristic 1. An axis X can be split into two axes X′ and X′′ by dividing the coordinate set of X

into two: the coordinate set of X′ and that of X′′, such that X = X′ ∪ X′′.
A coordinate can be expanded as a coordinate hierarchy, where the low-level coordinates represent

the subclasses of their common ancestor. We use Sup(C) to denote the direct ancestor of C in a
coordinate hierarchy. The name of each coordinate of the hierarchy can be differentiated from the
others by connecting its name to all of its ancestors. Considering the hierarchical characteristic, the
concept of coordinate is defined as follows.

Definition 3. A coordinate C represents a class of resources (denoted as R(C)) that satisfies the
following: if C = Sup(C′) then R(C′) ⊆ R(C).

According to Definition 3, if C = Sup(C′) and C′ = Sup(C′′) then R(C′′) ⊆ R(C).
An axis with hierarchical coordinates can be mapped onto an axis with flat coordinates. So this

section focuses on the flat case. A good design for resource space should guarantee correct resource
sharing and management. Synonyms like ‘teacher’, ‘instructor’ and ‘tutor’ are not eligible for being
used as coordinates at the same axis because they lead to misunderstandings and incorrect operation
when carrying out resource operations. The following four definitions define the semantic relationship
between coordinates and the relationship between axes based on the assumption.

Definition 4. A coordinate C is independent from another coordinate C′ if C /∈ Output =
Ontology-Service(C′, 1).

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1392 H. ZHUGE

Definition 5. Let X = (C1, C2, . . . , Cn) be an axis and C′
i be a coordinate at another axis X′. We can

say that X fine classifies C′
i (denoted as C′

i/X) if and only if

(1) (R(Ck) ∩ R(C′
i)) ∩ (R(Cp) ∩ R(C′

i)) = φ (k
= p, and k, p ∈ [1, n]); and
(2) (R(C1) ∩ R(C′

i)) ∪ (R(C2) ∩ R(C′
i)) ∪ · · · ∪ (R(Cn) ∩ R(C′

i)) = R(C′
i) hold.

As a result of the fine classification, R(C′) is classified into n categories: R(C′
i/X) = {R(C1) ∩

R(C′
i), R(C2) ∩ R(C′

i), . . . , R(Cn) ∩ R(C′
i)}.

Definition 6. For two axes X = {C1, C2, . . . , Cn} and X′ = {C′
1, C

′
2, . . . , C

′
m}, we can say that X fine

classifies X′ (denoted as X′/X) if and only if X fine classifies C′
1, C

′
2, . . . , and C′

m.

Characteristic 2 (Transitivity of fine classification). If X′′/X′ and X′/X, then X′′/X holds.

The proof of Characteristic 2 is presented in Appendix A.

Definition 7. Two axes X and X′ are assumed to be orthogonal with each other (denoted as X⊥ X′) if
X fine classifies X′ and vice versa, i.e. both X′/X and X/X′ hold.

For example, KnowledgeLevel = <Concept, Axiom, Rule, Method> ⊥ Discipline = <Computer,
Communication, Ecology, Math> because <Concept, Axiom, Rule, Method> constitutes a fine clas-
sification of every coordinate of the ‘Discipline’ axis and the <Computer, Communication, Ecology,
Math> constitutes a fine classification of every coordinate of the ‘KnowledgeLevel’ axis. According to
the transitivity of the fine classification, we can reach the following characteristic (proof is presented
in Appendix B).

Characteristic 3. If X⊥ X′ and X′⊥ X′′, then X⊥ X′′ holds.

To answer the question of what is a good design of the resource space, we need to define the normal
forms of the resource space.

Definition 8. The first normal form of a resource space is a resource space, and there is no name
duplication between coordinates at any axis.

Definition 9. The second normal form of a resource space is a first normal form, and any two
coordinates are independent of each other.

The second normal form excludes the case that a coordinate includes another in semantics.

Definition 10. The third normal form of a resource space is a second normal form, and any two axes
of it are orthogonal with each other.

The three normal forms provide the designers the guidelines to design a proper resource space.
The first normal form is the weakest, which can avoid explicit coordinate duplication. The second
normal form is stronger, which can avoid inexplicit coordinate duplication. The third normal form is
the strongest, which guarantees resources are properly operated. The setting of the coordinates of a
resource space is relevant to the type of resources contained.

Characteristic 4. If two resource spaces RS1 and RS2 store the same type of resources and they have
n (n � 1) common axes, then they can be joined together as one RS such that RS1 and RS2 share

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1393

these n common axes and |RS| = |RS1| + |RS2| − n. RS is called the join of RS1 and RS2, denoted as
RS1 · RS2 ⇒ RS.

Characteristic 5. A resource space RS can be disjoined into two resource spaces RS1 and RS2 (denoted
as RS ⇒ RS1 · RS2) that store the same type of resources as that of RS such that they have n

(1 � n � Min (|RS1|, |RS2|)) common axes and |RS|−n different axes, and |RS| = |RS1|+ |RS2|−n.

Characteristic 6. If two resource spaces RS1 and RS2 store the same type of resources and satisfy
(1) |RS1| = |RS2| = n, and (2) they have n−1 common axes, and two different axes X1 and X2 satisfy
the merge condition, then they can be merged into one RS by retaining the n − 1 common axes and
adding a new axis X = X1 ∪ X2. RS is called the merge of RS1 and RS2, denoted as RS1 ∪ RS2 ⇒ RS,
and |RS| = n.

Characteristic 7. A resource space RS can be split into two resource spaces RS1 and RS2 that store the
same type of resources as RS and have |RS| − 1 common axes by splitting an axis X into two X′ and
X′′ such that X = X′ ∪ X′′. This split operation is denoted as RS ⇒ RS1 ∪ RS2.

According to Definitions 8–10 and Characteristic 3, we can prove the following three lemmas.
We omit the proofs for Lemmas 1 and 2 since they are fairly straightforward.

Lemma 1. Let RS1 · RS2 ⇒ RS, where RS is the first normal form if and only if both RS1 and RS2 are
the first normal form.

Lemma 2. Let RS1 · RS2 ⇒ RS, where RS is the second normal form if and only if both RS1 and RS2
are the second normal form.

Lemma 3. Let RS1 · RS2 ⇒ RS, where RS is the third normal form if and only if both RS1 and RS2 are
the third normal form.

Proof.

(1) Let RS1(X11, . . . , X1n) and RS2 (X21, . . . , X2m) be two resource spaces satisfying the third
normal form. Since RS1 · RS2 ⇒ RS holds, RS1 and RS2 have at least one common axis.
Without losing generality, we assume X1n = X21 = X. According to Lemmas 1 and 2,
RS is the second normal form. According to Definition 10, we have X11⊥ · · ·⊥ X1n and
X21⊥ · · · ⊥ X2m. According to Characteristic 3 and the premise, we have X11⊥ · · · ⊥ X

(X1n or X21)⊥ · · · ⊥ X2m. Hence, RS is the third normal form.
(2) Let RS be the third normal form. According to Definition 10, Lemma 2 and Characteristic 2,

We can simply say that both RS1 and RS2 are the third normal form. �

According to Characteristics 3–6, we have the following lemma.

Lemma 4. We have:

(1) RS ⇒ RS1 · RS2 if and only if RS1 · RS2 ⇒ RS;
(2) RS ⇒ RS1 ∪ RS2 if and only if RS1 ∪ RS2 ⇒ RS.

Similar to Lemmas 1–3, we can prove the following lemma. It enables a high-dimensional resource
space to be disjoined into several low-dimensional resource spaces that keep the same normal form as
the original resource space. For example, a five-dimensional resource space can be disjoined into two,
three-dimensional resource spaces that share a common axis.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1394 H. ZHUGE

Lemma 5. Let RS ⇒ RS1 · RS2.

(1) If RS is the first/second/third normal form then both RS1 and RS2 are the first/second/third
normal form.

(2) RS is the third normal form if and only if both RS1 and RS2 are the third normal form.

According to the definition of the normal forms, we have the following two lemmas about the merge
and split operations.

Lemma 6. Let RS ⇒ RS1 ∪ RS2, if RS is the first/second/third normal form, then RS1 and RS2 are the
first/second/third normal form.

Lemma 7. Let RS1 ∪RS2 ⇒ RS, if RS1 and RS2 are the third normal forms, and RS is a second normal
form RS, then RS is a third normal form.

Semantic overlaps may exist between resource definitions in some applications. In this case, the
resource space designers have to use near-synonyms as the coordinates at the same axis.

Definition 11. A coordinate C is called weak independent of another coordinate C′ if C /∈ Output =
Ontology-Service(C′, 0).

According to Definition 9, we can relax the second normal form as the weak second normal form,
based on which, we can further relax the third normal form as the weak third normal form. The weak
third normal form can meet some application requirements.

Definition 12. The weak second normal form of the resource space is a first normal form and for any
one of its axes, any two coordinates are weak independent of each other.

Definition 13. The weak third normal form of a resource space is a weak second normal form and any
two of its axes are orthogonal with each other.

A third normal form resource space may contain empty points (an empty point specifies no
resources). This forms negative impact on the efficiency of resource management. We can further
normalize the resource space by ruling out the empty points. The following definition is an
enhancement of Definition 5.

Definition 14. Let X = (C1, C2, . . . , Cn) be an axis and C′
i be a coordinate at another axis X′. We can

say that X regularly fine classifies C′
i (denoted as C′

i/X) if and only if

(1) R(C1) ∩ R(C′
i)
= φ, R(C2) ∩ R(C′

i)
= φ, . . . , and R(Cn) ∩ R(C′
i)
= φ;

(2) (R(Ck) ∩ R(C′
i)) ∩ (R(Cp) ∩ R(C′

i)) = φ (k
= p, and k, p ∈ [1, n]); and
(3) R(C1) ∩ R(C′

i) ∪ R(C2) ∩ R(C′
i) ∪ · · · ∪ R(Cn) ∩ R(C′

i) = R(C′
i) hold.

Similar to Definitions 6 and 7, we can define the regular fine classification between axes and the
regular orthogonality between axes based on Definition 14. Thereafter we can give the following
definition.

Definition 15. The fourth normal form of a resource space is a third normal form and any two of its
axes are regularly orthogonal with each other.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1395

4.2. Reference resource space

A generic reference resource space is a three-dimensional resource space: RS = (category, level,
location). The category dimension is a vertical classification of resources. A coordinate of the axis
represents a certain type of category. A category coordinate can include several sub-categories, and
each sub-category can further include several smaller sub-categories. A category together with its all-
level sub-categories constitutes a category hierarchy. Coordinates of the category axis are scalable
because people usually use resources across different levels. Except for the basic sub-categories, each
coordinate of the horizontal axis can be drilled down onto a set of low-level coordinates, which can be
then drilled down again or rolled up to its up-level coordinates. Name duplication can be avoided by
denoting a sub-category as up-level-category.sub-category. A resource can be accurately located when
its category and level information are given. The generic reference resource space can have different
specializations according to the types of the resources that the resource space contains.

The reference information space is a three-dimensional resource space (information-category,
information-level, location), where the former two dimensions identify information content, and the
third dimension identifies the locations that store information. Each point in the space represents
information at a certain information level of an information category and is stored at a certain location.
Information category refers to the classification of the information content. Information can be leveled
according to the scale of information granularity or the types of information. For example, information
granularity can be defined as five scales from small to large: data, paragraph, page, section, and book.

The reference service space is a three-dimensional resource space (service-category, service-level,
location), where the former two dimensions identify the service region, and the third dimension
identifies the logical locations that store services. The coordinates of the service-category axis are
the function classification of the services. The service-level axis contains four coordinates from low
(close to hardware) to high (close to users): system level, middleware level, application interface (API)
level, and application level. Each point in the space represents a set of services at a certain service level
of a service category and is stored at a certain location.

The reference knowledge space is a three-dimensional resource space (knowledge-category,
knowledge-level, location), where the knowledge-category dimension and the knowledge-level
dimension of a knowledge space identify knowledge content at a certain knowledge level of a
certain knowledge category, the location dimension identifies the locations that store knowledge.
With reference to the knowledge levels of the axiom system, we can classify the knowledge space
into four knowledge levels from low to high: conceptual level, axiom level, rule level, and method
level. The conceptual level contains the basic concepts in the form of noun or noun phrases together
with their explanations or definitions like dictionaries. The axiom level contains the commonsense
knowledge of knowledge categories. An axiom takes the form of a natural language statement or a
mathematical equation that describes the relationship between concepts. The rule level contains the
basic rules and principles of knowledge categories. A rule reflects the logical relationship between
axioms. It usually takes the form of production rules: IF condition THEN conclusion. The method
level contains the problem-solving methods. A problem-solving method takes the form of the problem-
solution pairs. The solution can be either a multi-step problem-solving process or simply a one-
step solution. Each knowledge category can include several sub-categories, and each sub-category
can further include several smaller sub-categories. A knowledge category together with its all-level
sub-categories constitutes a knowledge category hierarchy.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1396 H. ZHUGE

5. CRITERIA FOR DESIGNING RESOURCE SPACE

The normal forms have answered the question of what is a good resource space. The purpose of setting
the design criteria is to guide users to design a good resource space. Criteria 1–3 set the conditions for
being a resource of the resource space. Criteria 4–6 set the conditions for the management mechanism
of the resource space.

Criterion 1 (Semantic completeness criterion). Any resource of the resource space should have a
complete semantics that can be described in natural languages, i.e. a resource space should not include
the resources that cannot be described or have not been described.

Criterion 2 (Resource positioning criterion). Any resource of the resource space should belong to a
set of resources that corresponds to a point in the resource space, i.e. any resource should be well
positioned in the resource space.

Criterion 3 (Resource use criterion). The use of any resource in the resource space should obey the
restriction of its usage and execution environment that is defined at its creation time.

For example, after we have got a MS Word format file from a resource space, the reading of this file
should obey its use restriction, i.e. we need the corresponding software like MS Word to open the file
and then to browse it.

A resource space has a logical representation layer and a physical storage layer. If the two layers do
not co-exist with each other, e.g. a resource exists at one layer but is absent from another layer, then
the management mechanism will fail to correctly operate it. To guarantee such a consistency, we set
the following criterion.

Criterion 4 (Existence consistency criterion). Any resource in the resource space should guarantee
the consistency of its existence in different levels of schemas.

Criterion 4 excludes the case that a resource exists in one schema but is absent from another schema.
Resource operations should guarantee this consistency.

Criterion 5 (Pervasive residence criterion). The resources of a resource space should be allowed to
reside on various hardware and software platforms.

Criterion 6 (Operable criterion). A resource space management mechanism should at least support
three basic resource operations: get a resource from the resource space, put a resource into the resource
space, and delete a resource in the resource space. These operations are also suitable for managing any
view of the resource space.

6. APPROACH FOR DESIGNING RESOURCE SPACE

The logical level design consists of the following five steps.

(1) Resource analysis. Resource analysis determines the application scope, surveys the resources
that need to be managed, and then specifies all the resources by using a Resource Dictionary
(RD), which forms the sources of a local resource space for the application. The resources can

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1397

be described in XML, and the RD can be managed by using our newly developed ROL or any
other XML query languages.

(2) Top-down resource partition. Different designers may have different resource partition solutions,
so a uniform viewpoint on resource partition is needed. The first step to achieve the uniform
viewpoint is to unify the top-level resource partition. Human, information, and natural
(or artificial) object are three key factors of human society, which also constitute the top-
level resource partition of human society. The top-level resource partition of a domain can be
regarded as a special case of the partition of human society. For example, the top-level resources
of an institute’s resources can be classified as three independent categories: human resources,
information resources, and service resources.
The next step is to refine each category top-down following the approach of the first step until
the category is small enough to serve for domain applications.

(3) Design two-dimensional resource spaces. Ordinary people can better manage two-dimensional
spaces than high-dimensional spaces. So, we can first design a set of two-dimensional resource
spaces then consider joining them into a high-dimensional resource space. The design process
includes the following steps.

• Determine axes’ names. An axis name reflects a category of the top-level partition of
resources.

• Determine the first-level coordinate names. Each coordinate reflects a category of the
super-category reflected by the axis name.

• Determine the coordinate hierarchies. For each first-level coordinate, determine its low-
level coordinates until reaching the basic category according to the resource partition
hierarchy.

• Check independency between coordinates. Check independency between coordinates at all
coordinate levels. In case dependency happens, re-consider resource partition at this level
and then adjust coordinates.

• Check orthogonal relationship between axes. In case orthogonality is not satisfied,
re-consider the coordinate settings, and then adjust the relevant coordinates.

(4) Join between spaces. Check the join condition of these two-dimensional spaces to determine
whether they can be joined into one uniform resource space.

(5) Use abstraction and analogy in design process. Making abstraction and analogy between the
existing (or reference) resource spaces and the new resource space is an important way to design
a proper resource space.

7. RESOURCE REPRESENTATION

The semantics of a resource can be represented by the black box—the semantics is reflected by the
semantics of relevant resources, and the white box—the semantics is described by its features and
functions. We can combine these two methods to achieve better effectiveness. A resource template
represents the common features of a class of resources with the same type. Resources defined in a
resource space need a set of templates, which can be organized into a template hierarchy, where the

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1398 H. ZHUGE

low-level templates are an expansion of the high-level template. The root template takes the following
form:

ResourceTemplate{
Resource-name: <string>;
Description: <abstract>;
Related-materials: [

Relationships: [<SemanticLinkType1, Resource1>,
. . . ,

<SemanticLinkTypem, Resourcem>,];
References: [material-name1: <address1>,

. . . ,

material-namen:<addressn>]
Others] }.

In the above template, the ‘address’ can be an URL, a book, or a paper. In the case of a book, the address
takes the following form: (BookName: String; Author: String; Publisher: String; PublisherAddress:
String or URL). In the case of a paper, the address takes the following form: (JournalName:
String; Volume: Number; Issue: Number; PaperTitle: String; AuthorName: String; Publisher: String;
PublisherAddress: String or URL). ‘Related-materials’ specifies the relationship between resources and
the references of the resources. The relationship is a kind of semantic link that describes the semantic
relationship between resources [20]. The ‘Others’ can be such relationships as the ‘Peer-resources:
<name-list>’ and the ‘Meta-resources: <name-list>’.

To satisfy the pervasive residence criterion, the XML (http://www.w3.org/TR/REC-xml) or the
XML-based markup languages can be adopted to represent the worldwide resource space and local
resource spaces. As an example, we represent a worldwide knowledge space and a local knowledge
space in XML as follows, where the URSL represents the location of the resource space in the
interconnection environment.

<WorldwideRS>

<UserName1> URSL1: LocalRSName: Group </UserName1>

. . .

<UserNamen> URSLn: LocalRSName: Group </UserNamen>

</WorldwideRS>

<LocalRSName>
<Public>

<Method>

<CategoryName> MethodSet </CategoryName>
. . .

<CategoryName> MethodSet </CategoryName>
</Method>

<Rule>
<CategoryName> RuleSet </CategoryName>

. . .

<CategoryName> RuleSet </CategoryName>

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1399

</Rule>
<Axiom>

<CategoryName> PrincipleSet </CategoryName>
. . .

<CategoryName>PrincipleSet </CategoryName>
</Axiom>

<Concept>
<CategoryName> ConceptSet </CategoryName>

. . .

<CategoryName> ConceptSet </CategoryName>
</Concept>

</Public>
</LocalRSName>

8. RUM

The Resource Space Grid has two types of user: the end-user who hopes to use resources directly
by operating an easy-to-use interface or indirectly through an application system, and the application
developer who is responsible for building the complex application systems for the end-user with the
support of the resource-utilize mechanism.

8.1. ROL

The ROL defines a set of basic operation statements for creating resource spaces and for sharing
and managing resources. These statements enable the user to create a local resource space, to get
the required resources from the universal view of all the local resource spaces, to put a set of resources
into a local resource space, to delete the resources with the right privilege, to browse the required
resources, to log the local resource space on or off the global view, to open a local resource space to a
set of particular users, and to join several resource spaces into one resource space. The ROL includes
the following statements, where ‘[. . .]’ means by default.

(1) Create-statement. Grammar: CREATE RS(X1,X2, . . . , Xn) [AT URSL] WHERE X1 =
{C11, . . . , C1n}, . . . , Xn = {Cn1, . . . , Cnm}. The create statement is to create a resource space
with the axes and coordinates defined in the ‘where’ clause.

(2) Get-statement. Grammar: GET R FROM RS [AT URSL] WHERE X1 = C1i , . . . , Xn = Cnj .
The get-statement is to get the required resources from the specified point of the given resource
space.

(3) Put-statement. Grammar: PUT R INTO RS [AT URSL] WHERE X1 = C1i , . . . , Xn = Cnj .
The put statement is to put resource R into the specified point of the given resource space.

(4) Delete-statement. Grammar: DELETE R IN RS [AT URSL] WHERE X1 = C1i , . . . , Xn = Cnj .
This statement means that if the specified resource exists at the specified point of the given
resource space and the user has the operation privilege, then it can be deleted.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1400 H. ZHUGE

(5) Browse-statement. Grammar: BROWSE RS [AT URSL] [WHERE <Condition>].
The <Condition> can be either a subspace (Xi, . . . , Xj) or a set of points (X1 =
{C1α, . . . , C1β}, . . . , Xn = {Cnµ, . . . , Cnν}). The browse statement is to browse the resources
in the given resource space or the resources at the specified point.

(6) Log-statement. Grammar: LOG RS [AT URSL] ON/OFF [Community]. The log statement is to
log a local resource space on or off the given community or the global resource space.

(7) Open-statement. Grammar: OPEN RS [AT URSL] TO RS1, . . . , RSm [AT URSL1, URSL2, . . . ,

URSLm]. The local resource spaces work in peer-to-peer mode. The open statement is to open a
resource space to the specified resource spaces to make them accessible to its resources.

(8) Join-statement. Grammar: JOIN RS1, . . . , RSm [AT URSL1, URSL2, . . . , URSLm] INTO RS
COMMON AXIS (Axis1, . . . , Axisn).

(9) Disjoin-statement. Grammar: DISJOIN RS [AT URSL] INTO RS1(X11, . . . , X1n), . . . ,

RSm(Xm1, . . . , Xmn) [AT URSL1, URSL2, . . . , URSLm] COMMON AXIS (Axis1, . . . , Axisk).
The disjoin-statement is to disjoin the RS at URSL into RS1, . . . , and RSm at URSL1, URSL2, . . . ,
and URSLm, respectively, and satisfies certain conditions. The constraint between the axes of RS
and RSi are defined in the condition portion. The locations of the resource spaces are useful in
deploying resource spaces.

(10) Merge-statement. Grammar: MERGE RS1, . . . , RSn [AT URSL1, URSL2, . . . , URSLn] INTO
RS [AT URSL] WHERE new-axis(RS) = X1µ(RS1) & · · · & Xnν(RSn) COMMON AXIS
(Axis1, . . . , Axisn−1). The merge statement is to merge the resource spaces RS1, . . . , and RSn

at URSL1, URSL2, . . . , and URSLn, respectively, into a new RS and to place it at URSL under the
condition of merge.

(11) Split-statement. Grammar: SPLIT RS [AT URSL] INTO RS1, . . . , RSn [AT URSL1, URSL2, . . . ,

URSLn] WHERE X(RS) => X1α(RS1) = <CoordinateSet1> & · · · & Xnβ(RSn) =
<CoordinateSetn>. The split statement is to split a resource space RS at the URSL into RS1, . . . ,
and RSn at URSL1, URSL2, . . . , and URSLn, respectively. The axis X of RS will be split into
X1α(RS1), . . . , and Xnβ(RSn).

The above operation statements can operate multiple resources by extending the expression of the
resource and its location to a list of resources and a list of corresponding locations. The inexact resource
retrieval can be realized by adding some particular equations to the condition portion.

8.2. Operable resource browser

An operable resource browser is a user-friendly operation interface that is responsible for locating the
resources according to the user’s requirement then informs the user of the content of these resources
represented in a template form. A resource browser consists of the following main functions.

(1) Provide an easy-to-use interface for users to input their operation requirements and to carry out
resource operations.

(2) Provide either a local resource view or a universal resource view of all the resources.
(3) Check the grammar of the resource operation statements.
(4) Deliver the operation to the resource-utilize engine, and then get the result from the engine.
(5) Show the operation result.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1401

Figure 2. The browser interface for getting a method from a knowledge space.

Figure 2 shows an interface of the resource browser where the upper portion shows the operation
buttons, the middle portion is the user-view schema of a resource space, the lower portion is the
pattern of the operation that has been selected, and the left portion of the interface is a scalable
coordinate hierarchy of the category axis. A cooperative team can unify the coordinates by editing
the coordinate hierarchy. For example, a software development team can set the following five
coordinates at the category axis: analysis, design, programming, testing, and maintaining, according to
the stages of the structured software development methodology. They can also add such coordinates as
‘team-affair’ after the creation of the coordinates.

The browser supports the following resource operation process.

(1) Choose the operation to be operated by clicking an operation button.
(2) Choose the resources to be operated by determining the coordinates in a resource space

(i.e. clicking the left resource tree then clicking the right rectangle representing a point of the
resource space).

(3) Input the operation parameters to define the operation.

8.3. Cooperation between resource spaces and resource usage engine

The cooperation relationship between the service resources, the knowledge resources, and the
information resources is described in Figure 3. Information is the origin of knowledge generation,

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1402 H. ZHUGE

Service Space

Knowledge Space Information Space

Service

Support
Knowledge

Support

Information

Support

Service

Support
Knowledge

Support

Information

Support

Figure 3. Cooperation between information space, knowledge space and service space.

and knowledge in turn supports information understanding. The information space provides both
the knowledge space and the service space with information support. The knowledge resources
provide both the service resources and the information resources with knowledge support. The service
resources can get information from the information space or get knowledge from the knowledge
space for processing information (like retrieving, computing or filtering) or processing knowledge
(like extraction, refinement or reasoning), then put the processing outputs (knowledge or information)
into the information space or the knowledge space.

The resource-utilize engine is responsible for enacting the resource operations determined by the
browser and explaining the content of resources according to their type because different types of
resources require different resource-utilize ways. The implementation concerns the following three
issues.

(1) Guarantee a proper granularity of resource during operation. For example, rules should be used
as a component because a single rule may not be meaningful and the deletion of a single rule
may cause incompleteness of the component it belongs to.

(2) Explain the content of resources (e.g. convert the formal rules to informal) because the end-user
may not be able to understand the formal expression of resources.

(3) Obtain the support from the other types of resources when using resources.

The resource-utilize engine can include the following advanced functions to realize in-depth resource
utilization.

(1) Reasoning and explanation according to the knowledge in the resource space when seeking the
answers to users’ queries.

(2) Automatically acquire knowledge resources from information resources.
(3) Refine raw resources into fine resources, and eliminate inconsistency and redundancy.

8.4. Complex application: resource operation programming

The ROL statements can also be composed as a program to implement an application. Similar to any
structural programming language, the control of the ROL is realized by the following statements.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1403

(1) Sequential-process: ROL-Statement; ROL-Statement; . . . ; ROL-Statement.
(2) Begin–End-statement: BEGIN sequential-process END.
(3) Branch-statement: IF <Condition-Expression> THEN <ROL-Statement> ELSE <ROL-

Statement>.
(4) Loop-statement: WHILE <Condition-Expression> DO <ROL-Statement>.
(5) Assignment: <Variable>=<ResourceId> | <Statement> | <Math-Expression> | <Boolean-

Expression>.

We have implemented a prototype of the programming environment in the China VEGA-KG project.

9. IMPLEMENTATION

A prototype of the Resource Space Grid VEGA-KG has been implemented to support distributed
resource sharing and management (http://kg.ict.ac.cn). It includes three types of Grids: a Knowledge
Grid, an Information Grid and a Service Grid, which manage knowledge, information and services
respectively in knowledge space, information space and service space. Any user can login as either a
team member or a personal user to create a new local resource space or to operate resources in the
existing resource spaces by clicking the operation button on the interface as shown in Figure 2 then
selecting the suitable resources to be operated through clicking the rectangle representing the point of
the resource space.

The VEGA-KG also supports flexible retrieval of resources. Users can express their inexact queries
by specifying the following six kinds of inexact specialization relationships between resources:
identical-specialization, extension-specialization, partial-specialization, revision-specialization, more-
general-than and more-special-than. Figure 4 shows the browser interface for getting a service from a
service space according to the inexact specialization relationship between services.

The VEGA-KG also includes a Knowledge Collection Board (KCB) that realizes knowledge
collection through human–machine cooperation. The collected knowledge can be put into the
knowledge space for public sharing after carrying out knowledge refinement. The KCB is available
at http://kg.ict.ac.cn.

10. COMPARISONS

10.1. Comparison between RSM and RDBM

There are two common points between the proposed RSM and the RDBM [21,22]. The first is that
operations are separated from the objects to be managed. The second is that their operation languages
have similar forms—SQL-like [17]. This enables users to easily understand the syntax and semantics
of the ROL. The major different points between the RSM and the RDBM concern six aspects, as shown
in Table I.

The first difference is that the foundation of the RSM is the resource ontology, while the foundation
of the RDBM is the relational algebra. The second difference is that the managed objects of the RSM
are the structured or semi-structured information, knowledge, and resources, while the managed objects

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1404 H. ZHUGE

Two-dimensional

service space

Figure 4. The browser interface for getting a service from a resource space.

Table I. Major differences between RSM and RDBM.

No. Items RSM RDBM

1 Foundation Resource ontology Relational algebra
2 Managed objects Structured/semi-structured resources Atomic data
3 Data model Uniform coordinate system Relational table
4 Normalization basis Independent coordinate and orthogonal axes Function dependence
5 Operation feature Uniform semantic view Attribute view
6 Interchange basis Semantic Web ODBC (RDBMS)

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1405

of the RDBM are the atomic data. The third difference is that the data model of the RSM is a uniform
coordinate system, while the data model of the RDBM is the relational table. The fourth difference is
that the normalization basis of the RSM is the independent and orthogonal coordinate system, while
the normalization basis of the RDBM is the function dependence relationship. The above differences
determine that the RSM concerns the contents (semantics) of the managed objects (resources) and
the content-based classification so it can carry out content-based operation and can accurately locate
resources, but the RDBM concerns the attributes of the managed objects so it supports attribute-based
operation. The fifth difference is that the RSM supports a uniform classification-based semantic view
when operating resources, while the RDBM essentially supports the view of attributes. This feature
enables the RSM to be suitable for uniformly sharing and managing the Internet resources. The sixth
difference is that the interchange basis of the RSM is the Semantic Web, which provides the
machine with an understandable semantic basis for resources, while the RDBM does not consider the
interchange requirement. The ODBC is used as the interchange standard between different commercial
RDBMS.

10.2. Comparison between RSM, multi-dimensional data model and object relation model

The differences between the OLTP and the OLAP were compared in [23]. The multidimensional data
model is used for the data warehouse and OLAP. It is different from the RSM in the foundation, the
managed objects, the normalization basis, the operation feature, and the interchange basis aspects.

The OO (object-oriented) methodology [24] provides the uniform method and mechanism for
domain modeling and system implementation. It simplifies the complexity of objective systems by
using the notions of class and object to abstract versatile entities, by encapsulating operations into each
class, and by enabling the inheritance mechanism, etc. It realizes software reuse during the software
development process. Object-relational databases (ORDBs) are a combination of object-orientation
technology and the relational database technology [25]. In an ORDB, a table may not be in the first
normal form of the relational data model, and a table can be nested in another table. Various nested
normal forms are studied as an extension of traditional flat normal forms in the relational data model
area [26–28], but these extensions are based on the relational algebra and relational data model.
Similar to the comparison in Table I, the RSM is different from the ORDB in foundation, managed
object, data model, normalization basis, operation feature, and exchange basis.

10.3. Comparison between the operable resource browser and the current Web browser

The operable resource browser enables users to actively operate resources. Table II shows five major
differences between the resource browser and the current Web browser:

(1) the objects operated by the resource browser are versatile Internet resources, while the current
Web browser only operates Web pages;

(2) the resource browser can accurately locate resources by coordinates—a kind of classification
semantics, while the current Web browser locates Web pages by URL;

(3) the resource browser can accurately locate resources then operate them by setting proper
parameters, but the current Web browser can only search Web pages according to keywords;

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1406 H. ZHUGE

Table II. Comparison between the resource browser and the current Web browser.

No. Items Resource browser Current Web browser

1 Operated object Internet resources HTML Web pages
2 Resource locating Coordinate-based resource locating URL + hyperlink
3 Operation Coordinate-based resource locating

+ operation language Keyword-based retrieval
4 View Uniform resource semantic view One HTML page
5 Support model RSM Without data model

Table III. Design method comparison.

No. Items Design method for RSM Design method for RDB

1 Analyzed object Resources Entity and relationship
2 Conceptual model No ER model
3 Semantic basis Partition Function dependency
4 Purpose of normal forms Raise preciseness of resource Raise correctness of table

operations operations
5 Reference model Yes No
6 Data organization Hierarchy by top-down partitioning Flat table
7 Schemas design User-view level, logical level, Conceptual level, logical level,

Semantic Web level physical level

(4) the resource browser supports a uniform resource semantic view, while the current Web browser
only supports a view of one Web page; and,

(5) the resource browser is supported by the RSM, while the current Web browser lacks the support
from a complete data model.

10.4. Comparison between the design methods for RSM and for RDBM

The major differences between the design method for the relational database [22] and the design
method for the RSM concern seven items, as compared in Table III. The design method for the RSM
does not have a conceptual model, so experience and the reference model play a key role in designing
a proper resource space. The hierarchical resource organization approach is in line with the top-down
resource partition and the ‘from general to special’ human thinking mode. The RSM is established on
the Semantic Web level, so it does not have the physical level schema of the RDBM.

10.5. Comparison between ROL, LOREL, XSL and XQL

The ROL is not only an SQL-like language but also a programming environment based on a semi-
structured data model combined with the XML syntax. According to the comparisons between five

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1407

Table IV. Comparison of ROL, XQL, LOREL and SQL.

Feature items ROL XQL LOREL SQL

Data format XML Doc XML Doc XML Doc Table
Operating object∗ Resources XML Doc XML Doc Table

(Information, Knowledge,
Services, and Grid)

Operation result XML Doc XML Doc Set of OIDs Table
Abstract data types Yes No Yes No
SQL-like Yes No Yes Yes
Specific data model Yes No Yes Yes
Different management of IDREFs No No Yes No
Document selection Yes Yes Yes No
Partial specified path expression Yes Yes Yes No
Nested queries∗ Yes No Yes Yes
Update language∗ Yes No Yes Yes
Loop statement∗ Yes No No No
Branch statement∗ Yes No No No
Set operations Partially Yes Yes Yes
Aggregates Partially Partially Yes Yes
Skelom function Yes No Yes No
Join operation∗ Yes No Yes Yes
Open operation∗ Yes No No No
Support of view∗ Yes No No Yes
Create new elements Yes No Yes Yes
Query structure Yes No No No
Query content Yes Yes Yes Yes
Support of RDF No No No No
Support of typed link∗ Yes No No No
Type coercion No Partially Yes No
Ordering the result Yes No Yes Yes
Universal resource view∗ Yes No No No
∗ Distinguishing features of the ROL.

types of XML query languages: LOREL, XML-QL, XML-GL, XSL and XQL made in Bonifati and
Ceri [29], we compare the ROL with the XQL, the LOREL and the SQL in Table IV, where the
distinguishing features of the ROL are denoted by an asterisk.

The XQL is a concise language and is developed as an extension of the XSL pattern language.
It builds upon the capability of identifying classes of nodes by adding Boolean logic, filters, indexing
into the collections of nodes [29]. The LOREL (http://www-db.stanford.edu/lore) is a friendly language
in the SQL style. As Table IV shows, the ROL borrows the syntax and semantics from the standard
SQL language. The statements of the ROL are SQL-like and have the SQL SELECT-FROM-WHERE
pattern. The ROL can perform operations similar to the classical relational database operations, such
as nested queries, aggregates, set operations, join and result ordering.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1408 H. ZHUGE

The ROL also borrows the following features from the XML query languages:

(1) the management of structured and semi-structured data;
(2) support abstract data types;
(3) the XML-based data format and the result semantics;
(4) support the skelom functions to associate a unique ID to a given Resource Space Grid;
(5) support document selection; and
(6) support partially specified path expression.

A distinguishing feature of the ROL is that it can operate various types of resources with hierarchical
structure including information, knowledge, services and even Resource Space Grids with a universal
semantic view supported by the RSM. But, the standard SQL only operates flat relational tables, and
the XML query languages only manage XML documents.

In order to raise the effectiveness and to enhance the mobility of using resources, a set of typed
links is established between resources in Resource Space Grid, like the abstraction and similar-
to relationships. The function of the ID references (IDREFs) is interpreted as references between
elements, not as strings in the ROL. The current version of the ROL does not support the Resource
Definition Framework (RDF), the group-by clause, and the type coercion.

11. SUMMARY

11.1. Concluding remarks

As an effort towards the next-generation Web, we have proposed the model, method and platform
for the Resource Space Grid. The kernel of the Resource Space Grid model includes the RSM and
the RUM. The RSM organizes the versatile resources in semantic normal forms, which guarantee
the correctness and the efficiency of resource operations. The Resource Space Grid model gives the
Internet users a means to represent, store, accumulate, share, manage, and use versatile resources in
a globally distributed application environment. The proposed criteria and design method can guide
designers to design a proper resource space. The prototype platform based on the proposed model
has been implemented and used in research teams and software development teams. Applications in
geographically distributed research teams show that the platform can realize resource sharing between
team members. The effectiveness and efficiency of teamwork can be raised due to the effect of resource
sharing. Comparisons show that the kernel technologies used in the proposed approach (including the
RSM model, the design method of the resource space, the operable browser and the ROL) are eligible
for uniformly sharing and managing versatile resources in a future interconnection environment.

11.2. Discussion and ongoing work

The exponential growth of resources is an obstacle to realize effective management. A resource space
with a fixed number of dimensions cannot avoid the exponential expansion of the resources in each
point of resource space. This issue can be solved in theory by increasing the number of dimensions.
Assuming that resources expand at the rate of en, we can use a resource space of n dimensions where
each dimension has n coordinates to manage the resource explosion since nn > en when n > e.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1409

In practice, resources are usually first classified by communities, and then classified by resource spaces
on different topics. More importantly, the resources in a future interconnection environment should
have life spans, which can avoid unlimited expansion of resources. A unified resource model named
soft-device was proposed for modeling resources in future interconnection environments [19].

The orthogonal resource space only solves the normal organization issue. The ideal resource
management approach still needs the mobility. For example, the ideal approach should still be able
to accurately locate a resource even though it is put into the wrong place in the resource space.
The Semantic Link Network model is proposed to establish the semantic links between resources [20].
The combination of the orthogonal resource space model and the Semantic Link Network model
can establish a kind of single semantic image for versatile resources, which enables a resource to
be efficiently retrieved no matter where it is placed in the space. Hence, an ideal resource space should
be defined on the basis of the classification semantics and link semantics.

Ongoing work includes the following aspects.

(1) Extension of RSM. We are seeking the normal form between the second and the third normal
forms to support a useful but not strict resource space. We are also seeking the higher normal
forms.

(2) Process Grid—enabling process management. We are establishing knowledge management
[30,31] functions above the Resource Space Grid for the purpose of raising the work efficiency
of a cooperative team, inspiring innovation, and enabling the whole knowledge of a team to be
accumulated and evolved during the cooperation process. A knowledge flow model has been
proposed to realize effective knowledge sharing [15]. We are going to incorporate workflow
management functions into the process management mechanism and to realize the coordination
between the knowledge flow and the workflow in modeling business processes [15,32].

(3) Resource coupling—to give Internet users the intelligent and in-depth resource-utilize services
through coupling different types of resources. As a special case of resource coupling, we have
established the typed semantic links between text resources and realized the corresponding text
browse mechanism.

(4) Resource component and resource community. Examining the case of people making use of the
rules in a rule base, we find that knowledge usage activities are carried out at a certain granularity
level, because the use of any single rule sometimes does not make any sense. Similarly, the
resources are shared at a certain granularity level. A Grid can also be regarded as a special
resource. A worldwide Grid can include a set of Grid components classified by geographical
regions or specialization fields. A resource community is a kind of large granularity unit where
resources are connected under the same or a similar topic.

(5) Grid semantics and methodology. We are investigating the semantic issues of the Resource Space
Grid itself and establishing a new system modeling methodology that is suitable for establishing
a future interconnect environment.

APPENDIX A. THE PROOF OF THE TRANSITIVITY OF FINE CLASSIFICATION

Let X1 = {C11, C12, . . . , C1k}, X2 = {C21, C22, . . . , C2m} and X3 = {C31, C32, . . . , C3n} be three
axes satisfying X2/X1 and X3/X2. We prove X3/X1 by the following two points.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1410 H. ZHUGE

(1) For ∀C3p ∈ X3, ∀C1i ∈ X1 and ∀C1j ∈ X1 (C1i
= C1j), we prove (R(C1i) ∩ R(C3p)) ∩
(R(C1j) ∩ R(C3p)) = ∅ as follows.

(R(C1i) ∩ R(C3p)) ∩ (R(C1j) ∩ R(C3p)) = R(C3p) ∩ (R(C1i) ∩ R(C1j))

∵ X3/X2

∴ C3p/X2

∴ R(C3p) =
m⋃

q=1
(R(C2q) ∩ R(C3p)) = R(C3p) ∩

m⋃
q=1

R(C2q)

∴ R(C3p) ∩ (R(C1i) ∩ R(C1j))

=
(

R(C3p) ∩
m⋃

q=1
R(C2q)

)
∩ (R(C1i) ∩ R(C1j))

= R(C3p) ∩
m⋃

q=1
(R(C2q) ∩ R(C1i) ∩ R(C1j))

= R(C3p) ∩
m⋃

q=1
((R(C1i) ∩ R(C2q)) ∩ (R(C1j) ∩ R(C2q)))

∵ X2/X1

∴ for ∀C2q ∈ X2, C2q/X1

∴ (R(C1i) ∩ R(C2q)) ∩ (R(C1j) ∩ R(C2q)) = ∅

∴ R(C3p) ∩
m⋃

q=1
((R(C1i) ∩ R(C2q)) ∩ (R(C1j) ∩ R(C2q)))

= R(C3p) ∩
m⋃

q=1
∅

= ∅

∴ (R(C1i) ∩ R(C3p)) ∩ (R(C1j) ∩ R(C3p)) = ∅.

(2) For ∀C3p ∈ X3, we can prove R(C3p) =
k⋃

i=1
(R(C1i) ∩ R(C3p))

k⋃
i=1

(R(C1i) ∩ R(C3p)) = R(C3p) ∩
k⋃

i=1
R(C1i)

∵ X3/X2

∴ R(C3p) =
m⋃

q=1
(R(C2q) ∩ R(C3p))

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1411

∴ R(C3p) ∩
k⋃

i=1
R(C1i) =

(
m⋃

q=1
(R(C2q) ∩ R(C3p))

)
∩

k⋃
i=1

R(C1i)

= R(C3p) ∩
(

m⋃
q=1

R(C2q)

)
∩

k⋃
i=1

R(C1i)

= R(C3p) ∩
(

m⋃
q=1

k⋃
i=1

(R(C1i) ∩ R(C2q))

)

∵ X2/X1

∴ R(C2q) =
k⋃

i=1
(R(C1i) ∩ R(C2q))

∴ R(C3p) ∩
(

m⋃
q=1

k⋃
i=1

(R(C1i) ∩ R(C2q))

)
= R(C3p) ∩

m⋃
q=1

R(C2q)

=
m⋃

q=1
(R(C2q) ∩ R(C3p))

∵ X3/X2

∴ R(C3p) =
m⋃

q=1
(R(C2q) ∩ R(C3p))

∴ R(C3p) =
k⋃

i=1
(R(C1i) ∩ R(C3p))

According to (1) and (2), we have X3/X1.

APPENDIX B. THE PROOF OF THE TRANSITIVITY OF ORTHOGONALITY

Let X1 = {C11, C12, . . . , C1k}, X2 = {C21, C22, . . . , C2m} and X3 = {C31, C32, . . . , C3n} be three
axes satisfying X2 ⊥ X1 and X3 ⊥ X2. We can prove X3 ⊥ X1 as follows.

∵ X3 ⊥ X2 and X2 ⊥ X1

∴ X3/X2 and X2/X1

We have X3/X1 according to the transitivity of fine classification.

∵ X2 ⊥ X1 and X3 ⊥ X2

∴ X1 ⊥ X2 and X2 ⊥ X3

∴ X1/X2 and X2/X3

We have X1/X3 according to the transitivity of fine classification. Hence we confirm X3 ⊥ X1.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

1412 H. ZHUGE

APPENDIX C. RESOURCES IN A THIRD NORMAL FORM RESOURCE SPACE CAN BE
ACCESSED FROM ANY AXIS

Let Xi = {Ci1, Ci2, . . . , Cip}, 1 � i � n. If the RS satisfies the third normal form, then for any two
axes Xk = {Ck1, Ck2, . . . , Ckl} and Xj = {Cj1, Cj2, . . . , Cjm} (1 � k
= j � n), Xk ⊥ Xj . We have
Ckq/Xj for every Ckq (1 � q � l).

According to the definition of the fine classification, we have

R(Ckq) = (R(Ckq) ∩ R(Cj1)) ∪ (R(Ckq) ∩ R(Cj2)) ∪ · · · (R(Ckq) ∩ R(Cjm))

= R(Ckq) ∩ (R(Cj1) ∪ R(Cj2) ∪ · · · ∪ R(Cjm))

then R(Ckq) ⊆ (R(Cj1) ∪ R(Cj2) ∪ · · · ∪ R(Cjm)) hold (1 � q � l). Hence, we have
(R(Ck1)∪R(Ck2)∪· · ·∪R(Ckl)) ⊆ (R(Cj1)∪R(Cj2)∪· · ·∪R(Cjm)) (1 � k
= j � n). Similarly, we
have (R(Cj1)∪R(Cj2)∪· · ·∪R(Cjm)) ⊆ (R(Ck1)∪R(Ck2)∪· · ·∪R(Ckl)) (1 � k
= j � n). And then
we have (R(Cj1)∪R(Cj2)∪· · ·∪R(Cjm)) = (R(Ck1)∪R(Ck2)∪· · ·∪R(Ckl)) (1 � k
= j � n). So,
if we suppose R = (R(Cj1) ∪ R(Cj2) ∪ · · · ∪ R(Cjm)), then for every axis Xi = {Ci1, Ci2, . . . , Cip},
1 � i � n, (R(Ci1) ∪ R(Ci2) ∪ · · · ∪ R(Cip)) = R. This means that the resources that are accessible
from any axis are the same. Hence the resource retrieval algorithm does not need to consider the order
of the axes.

ACKNOWLEDGEMENTS

The author thanks all the team members of the China Knowledge Grid Research Group (CKG), especially J. Liu,
Y. Li, E. Yao, and Y. Xing for their diligent work on developing relevant software and helpful suggestions.
Thanks also go to the editor and reviewers who provided helpful comments. The research work was supported
by the National Science Foundation and the National Basic Research Plan of China.

REFERENCES

1. Barabási A-L, Bonabeau E. Scale-free networks. Scientific American 2003; 288(5):60–69.
2. Berners-Lee T, Hendler J, Lassila O. Semantic Web. Scientific American 2001; 284(5):34–43.
3. Heflin J, Hendler J. A portrait of the Semantic Web in action. IEEE Intelligent Systems 2001; 16(2):54–59.
4. Hendler J. Agents and the Semantic Web. IEEE Intelligent Systems 2001; 16(2):30–37.
5. Maedche A, Staab S. An ontology learning for the Semantic Web. IEEE Intelligent Systems 2001; 16(2):72–79.
6. McHraith SA, Son TC, Zeng H. Semantic Web Services. IEEE Intelligent Systems 2001; 16(2):46–53.
7. Decker S, Melnik S, Harmelen F, Fensel D, Klein M, Broekstra J, Erdmann M, Horrocks I. The Semantic Web: The roles

of XML and RDF. IEEE Internet Computing 2000; 4(5):63–74.
8. Klein M. XML, RDF, and relatives. IEEE Intelligent Systems 2001; 16(2):26–28.
9. Broekstra J, Klein M, Decker S, Fensel D, Harmelen F, Horrocks I. Enabling knowledge representation on the Web by

extending RDF schema. Computer Networks 2002; 39(5):609–634.
10. Fensel D, Harmelen F, Horrocks I, McGuinness D, Patel-Schneider P. OIL: An ontology infrastructure for the Semantic

Web. IEEE Intelligent Systems 2001; 16(2):38–45.
11. Hendler J, McGuinness D. The DARPA Agent Markup Language. IEEE Intelligent Systems 2000; 15(6):72–73.
12. Martin P, Eklund PW. Knowledge retrieval and the World Wide Web. IEEE Intelligent Systems 2000; 15(3):18–25.
13. Foster I. Internet computing and the emerging Grid.

http://www.nature.com/nature/webmatters/grid/grid.html [7 December 2000].

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

RESOURCE SPACE GRID: MODEL, METHOD AND PLATFORM 1413

14. Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S. Condor-G: A computation management agent for multi-institutional
Grids. Proceedings 10th IEEE Symposium on High Performance Distributed Computing (HPDC10), 2001. IEEE Computer
Society Press: Los Alamitos, CA, 2001.

15. Zhuge H. A knowledge flow model for peer-to-peer team knowledge sharing and management. Expert Systems with
Applications 2002; 23(1):313–320.

16. Zhuge H. China e-science knowledge Grid environment. IEEE Intelligent Systems 2004; 19(1):13–17.
17. ANSI. The database language SQL. Document ANSI X3.315, 1986.
18. Eisenberg A, Melton J. Sql:1999, formerly known as Sql3. SIGMOD Record 1999; 28(1):131–138.
19. Zhuge H. Clustering soft-devices in Semantic Grid. IEEE Computing in Science and Engineering 2002; 4(6):60–62.
20. Zhuge H. Active document framework: Model and tool. Information and Management 2003; 41(1):87–97.
21. Bocy R, Chamberlin D, King W, Hammer M. Specifying queries as relational expressions. Communications of the ACM

1975; 18(11):621–628.
22. Codd EF. A relational model of data for large shared data banks. Communications of the ACM 1970; 13(6):377–387.
23. Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann: San Francisco, CA, 2000.
24. Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language: User Guide. Addison-Wesley: Reading, MA, 1999.
25. Stonebraker M, Brown P, Moore D. Object-Relational DBMSs: Tracking the Next Great Wave (2nd edn). Morgan

Kaufmann: San Francisco, CA, 1999.
26. Mok WY. A comparative study of various nested normal forms. IEEE Transactions on Knowledge and Data Engineering

2002; 14(2):369–385.
27. Ozsoyoglu ZM, Yuan LY. A new normal form for nested relations. ACM Transactions on Database Systems 1987;

12(1):111–136.
28. Tari Z, Stokes J, Spaccapietra S. Object normal forms and dependency constraints for object-oriented schemata. ACM

Transactions on Database Systems 1997; 22(4):513–569.
29. Bonifati A, Ceri S. Comparative analysis of five XML query languages. SIGMOD Record 2000; 29(1):68–79.
30. Dieng R. Knowledge management and the Internet. IEEE Intelligent Systems 2000; 15(3):14–17.
31. Drucker PF (ed.). Harvard Business Review on Knowledge Management. Harvard Business School Press: Boston, MA,

1998.
32. WfMC. The workflow reference model. http://www.wfmc.org [October 2000].

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:1385–1413

	1 INTRODUCTION
	2 CORE SCIENTIFIC ISSUES AND RESEARCH METHODOLOGY
	3 GENERAL ARCHITECTURE
	4 RSM
	4.1 Theory
	4.2 Reference resource space

	5 CRITERIA FOR DESIGNING RESOURCE SPACE
	6 APPROACH FOR DESIGNING RESOURCE SPACE
	7 RESOURCE REPRESENTATION
	8 RUM
	8.1 ROL
	8.2 Operable resource browser
	8.3 Cooperation between resource spaces and resource usage engine
	8.4 Complex application: resource operation programming

	9 IMPLEMENTATION
	10 COMPARISONS
	10.1 Comparison between RSM and RDBM
	10.2 Comparison between RSM, multi-dimensional data model and object relation model
	10.3 Comparison between the operable resource browser and the current Web browser
	10.4 Comparison between the design methods for RSM and for RDBM
	10.5 Comparison between ROL, LOREL, XSL and XQL

	11 SUMMARY
	11.1 Concluding remarks
	11.2 Discussion and ongoing work

	APPENDIX A. THE PROOF OF THE TRANSITIVITY OF FINE CLASSIFICATION
	APPENDIX B. THE PROOF OF THE TRANSITIVITY OF ORTHOGONALITY
	APPENDIX C. RESOURCES IN A THIRD NORMAL FORM RESOURCE SPACE CAN BE ACCESSED FROM ANY AXIS

