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Abstract—This paper investigates the issue of realizing complexis routed in the network, the source node needs to datrm
queries for heterogeneous resources on dynamic and ¢m-scale the IDs of the target nodes that are responsible éodésired
decentralized networks. We build a distributed indexon a data Ob]ects Then' Searchlng for a query |S transﬁbnme
the routing from the source node to target nodes withifgpe
IDs.

structured P2P network HRing to represent semantic elations
between resources to support complex query, and estah
semantic links among nodes of P2P network to realize fiefent
routing of queries. Incorporating distributed index, semantic
links and HRing forms a structured P2P Semantic LinkNetwork

(SemHRing). Current search engines are limited in abilif to
support relational queries, which are often requiredin real

convert
Node ID
applications. SemHRing can support keyword queries and Fig-1. Query analysis process before routing.

rela}tional queries while guaranteeing high performancg andow To support complex queries, a structured P2P network
maintenance cost as well as high robustness. SemHRing daa g, 14 satisfy two requirements: First, the network lapp
feasible solution to the distributed storage systemof next- -
- ; should be efficient, scalable and robust. Second angk mo
generation search engines. : . )
importantly, it should be able to preserve the senmmofidata
[. INTRODUCTION objects.

How to effectively organize heterogeneous resources orf* 'ng-structured P2P network HRing based on Harmonic
decentralized network and provide efficient complex quenf'ieS IS proposed in [33]. It can achieve both high
services is a challenge. Current search engines suBbagle performance and low maintenance cost, whlle_ guaranteeing
and Yahoo! mainly offer keyword queries. Demands dgmarkable robustness. Further, the construction oin¢iR
searching for or by relations are increasing. topology is entirely independent of the ID space. It duss _

Research on complex queries in structured P2P netwdfRY On data types and data management method. Thus, HRing
concerns two problems: routing performance and qupest Ccan Serve as the underlying P2P overlay for managing

The structured P2P networks have the potential to hiettea decentralized heterogeneous resources. _
op Our solution is to build semantic relations over the riRi

efficient and robust. However, current structured P2P ; ) . )
networks only support limited query types due to its topoloé]?/ support both keyword queries and relational queries with
construction method. igh performance and low maintenance cost.

A typical query-answer process of a structured P2P I
network consists of two conversion sub-processes édefor
routing (see Fig.1): the conversion from keywords into ti#¢ P2P Topologies and Relevant Complex Queries
IDs of the desired data objects and the conversion @&  pyp tgnlogy design plays a fundamental role in the design
object IDs into the desired node IDs. The query type&R For o 1ing algorithm and query types. Different topologies

network can support is determined by the first conversigfleq gitferent routing algorithms and support different query
Keywords represent certain semantics, while the onlylwaytypes' thus, having different performance and cost. Many

know data objects in a network is their IDs. The topplog . ,ctured P2P topologies have been proposed. The
construction method like DHT (Distributed Hash Table) MaPSpresentative methods are DHT, balanced tree/migl-s
keywords into a uniform binary ID space, which destrogs tlyor1q and Skip list. ’

semz_intics of data objects and thus incur high costdim'r_plex DHT method maps keywords of data objects and node
queries [23][25][27][29]. To support complex queries, thgeniifiers (like IP addresses) into a unifonmbit binary
topology construction method should enable data objextdD gpace where nodes and data objects obtain binaryDia.
preserve the semantics of data objects. One INIMRLIS 10 ohiects on DHT networks are organized by their ID order.
directly use keywords as IDs, which requires the network E%ch node is responsible for a specific range of theptdes

be able to support string ID space. The second COOWershr networks can efficiently support exact-match query, but

illustrates the mapping between data object IDs ant@de ., cannot preserve the semantics and locality of kegsvo
IDs (they belong to the same ID space). Thus, be@ery o gata objects. It is hard for them to directly supporhplex

extract

convert o [ Data

object ID
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queries such as range query and multi-attribute query. Typisamantics and locality of keywords, thus incurring highkt c
DHT networks include CAN [23], Chord [26], Pastry [25]for complex query. Namely, the conversion from keywouods t
and Tapestry [29]. data object ID indicates the query types that can be segport
To support complex query on DHT networks, the key is by P2P network. The other three topology methods allow
make DHT adaptive to string IDs. Much work has been dokeywords of data objects to be their IDs. The data olbjgct
to build distributed index on DHT networks. Aberer et aspace is just their keyword space. So they can directly suppor
design a distributed indexing tree structure P-Grid to suppoomplex keyword queries including range query, prefix query
range query [1]. Ramabhadran et al. build a binary tllecca and multi-attribute query.
prefix hash trees (PHT) over DHT to support range query andTwo observations can be obtained. First, one topology
load balance [22]. Crainiceanu et al. provide a B+lifge construction method only supports one query type. This is
hierarchical index structure to support range query basedbatause that the topology construction method deternfiees t
the assumption of one data object per node [6]. Zhuge etcahversion from keywords to data object IDs (see Fighis
build a distributed trie index on Chord to support range quetgtermining the data organization method. A certain data
as a scalable Knowledge Grid platform [32]. Cai et alkerekt management method is only appropriate for one query type.
Chord to support range query and multi-attribute query usiifig support more query types, an effective way is to build a
a uniform locality preserving hash function to map data i index to extend the data organization method since trexind
the Chord identifier space [5]. Zhu et al. exploit thealitg can organize pointers of data objects in a way diffefremt
sensitive hash functions on DHT overlays to realizat t the data organization on the topology.
semantically close files are clustered into the saneespeith Second, most structured P2P solutions can hardly support
high probability [30]. relational queries. Taking relations between two dbjes a
Tree-structured P2P networks use the property of #twe-dimensional data space, a two-dimensional distributed
balanced tree structure to achieve high search effigi®uch indexing structure can be used to support relational queries.
structures support range query by directly using keywordsHiRing allows the co-existence of multiple ID spaces el
data objects as their IDs. BATON is a balanced binsrg directly support multi-dimensional index without using
structured P2P overlay by building vertical and horizontdimension reduction.
links in each node [15]. Kothari et al. present a balknce o
binary tree-like structure to support range query [19f: Semantic Link Network
Zatloukal and Harvey introduce the family tree, an orderedA Semantic Link Network (SLN) is a directed network
and distributed dictionary data structure with each nodensisting of semantic nodes and semantic links [31].
having constant pointers [28]. Query routing cd3(kg(n)) Semantic nodes contain resources of various types. A
in expectation an@®(log?(n)) with high probability. semantic link between two nodes is a link with a tagoted
Skip-List-based overlays such as SkipNet [11] and SKigm one node to another. The tag indicates the teilec
Graph [3] support range queries by using random numeric I@ation between two nodes. The tag can be of diffeygais
to construct routing tables and using name IDs to lodate according to specific applications.
objects. They can achievé(log(n)) routing hops in A semantic node can be a simple concept or a complex
expectation withO(log(n)) routing table size. Harvey andsystem. As illustrated in Fig.2, node A represents an e-
Munro provide a deterministic SkipNet that ensurdgarning system, and node G represents a student infonma
deterministicO(log(n)) bound for routing hops [12]. But nodesystem of a university. The e-learning system needs to
insertion and departure requidlog?(n)) time. Aspnes et al. regularly query student information to update student records.
propose a bucket-based Skip Graph that reduces the sgden, node A interconnects node G withefierence semantic
complexity of a Skip Graph fror®(mlog(m)) to O(nlog(n)), link. The original SLN model contains a set of bagimantic
wherem is the number of data objects, amis the number of links and a set of reasoning rules on semantic links [Blip
nodes in the system [2]. distinguished advantage of SLN is that it is a self-organized
Small-world phenomena can be exploited to build P2ZRta model and supports relational reasoning.
overlays. Kleinberg provides a method to model a smailld Our idea is to add tags on links to indicate the relations
in a two-dimensional grid [17][18]. Symphony uses Kleinbetfgetween nodes in P2P network. The relations betweeasnod
model to build a ring-structured P2P network [20]. Mercugre determined by the data objects stored on nodes. Since
supports multi-attribute range query by building a Symphonguery messages are forwarded among nodes, discovering and
based ring [4]. Semantic small world (SSW) supporiiilding semantic links could improve search efficiency.
semantic-based query by organizing data objects accamling
their semantics. Through dimension reduction on semant~
space, SSW self-organizes into a linear small world. (—_W
DHT can only support exact-match, the other structurex--___ 5 _E---%
such as tree-based, skip-list-based and small-world-bas ~ ~ 777~ ~ e e
structures can support complex query. In DHT networks, the "
conversion from keywords to data objects ID uses the
consistent hash function, which makes data object 38 | Fig.2. Semantic relation between two semantic nodes
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I1l. SEMANTIC DATA MODEL AND QUERIESOF SEMHRING IV. THE UNDERLYING TOPOLOGY

C. Semantic Data Model and the Supported Queries The underlying topology of SemHRing adopts the HRing

i o 33]. The basic idea of HRing comes from the Harmonic
As a semantic data model, Semantic Link Network SLdqries [13]. The sum of the first terms of the Harmonic

consists of a set of semantic links and a set of rudes n 1

relation reasoning on semantic links, represented &§ieqH :z_ approximates to Imj + 0.5772156649...
<{d/Jp-v}, Rules>, whered represents any data object " =1

named by URI,p represents an attribute or a relation on g the largen is, the closer it gets to Iy

subject, and represents the value pflf pis an attribute o, |n HRing, the routing table of each node contains twatsho
thenv is an attribute vall_Je, ar_ld pfis a relation, thew is a |inks pointing to its predecessor and successor, (i)
data object that hgsrelation withd. If d andp are defaulty |ong finks pointing to its remote neighbors. We define the
represents keyword. position distancdist(A, B) between two nodes A and B as
Above data model supports the following types of queriesthe number of “ring steps” from node A to node B in

(1) Multiple keyword query: inputv, AND V, ... AND v to clockwise. As shown in Fig.Dist(A, E) = 4 indicates that
obtain the data objects that contain these keywords. ~ Node A reaches node E in four steps along the ring. Tee lo

(2) Range query: input pJ[v, V] to obtain the data objects link cqnstru_c_tion petween two nodes Is in reverse F"'“"“'“.‘.'
whose attribut@’s value is within the interval. to their position distance. When a new node C joinsngRit

(3) Multiple attribute query: input attributep, AND p,... visits the existing nodes along the ring clockwise andtem

AND ps to obtain the data objects that commonly ha\;bei_ghbors are added with the probability in invers;pprtion
these attributes and return the corresponding values. 1O ItS traversal steps. So, based on the Harmoniessetie

(4) Relational query type 1: input a relatiorp to obtain the 'outing table size of each node scales vit(n). HRing's
pairs of data objectsi( v) that havep relation. ANEW process for long link construction guarantees ¢iaah

(5) Relational query type 2: input two sets of attributes and'0de @dd®X(In(n)) remote neighbors withim(n) steps [33].
their valuegp; = v; AND p, =V, ...AND py =V p/'= v/
AND py’ = V7' ... AND py =V, to obtain the relations
between the data objects with attribupes v AND p, =
vV, ...AND py =vi and the data objects with attribufgs=
vy AND py’ = v, ...AND P =Vi.

(6) Relational query type 3: input a set of attributes and their
valuesp; =v; AND p, =V, ...AND p, =v and a relatiom o)
to obtain the data objects related with relajoand with
these attributes and values.

The routing
table of node C
Node D | snC I =1

Node H | DisfC H) =5

Node U | DisC L) = 10

B. Implementation Solution

We construct semantic links at two levels: among dati
objects and among P2P nodes.

A semantic linkd//p-v can also be represented as a
function p(d) = v or a relational tripled, p, v). SemHRing
adopts RDF (Resource Description Framework) [24] to
implement semantic link as relational triple, maps tizFR Fig. 3. Basic structure of HRing.

triples into a 2-dimensional distributed index, and then The prominent difference between HRing and the existing
construct the index on HRing topology. _ ~ structured networks is that the long link constructiorlRing

We assume that relations between data objects alesdsly js entirely independent of the ID space. In the existing
That is, triples have been extracted from data abjesing structured networks, the node ID space is in charge of two
existing techniques or are explicitly published by user® Th s building long links and performing routing, while in

task of SemHR_ing Is to manage fchese triples in a unifoﬁnﬂ?ing, the ID space is responsible for only one task
manner to facilitate complex queries. The key work B o forming routing. Building long links in the 1D space will

design of the index structure and its deployment method Qi:i~t the ID types, thus limiting the semantics dafta

HRing. jects in the network. For example, the long links ir@h

Relat?ons between nodes in P2P ne_twork_ are determinegg constructed in ID space, which requires the ID spaoe to
data objects stored on them. SemHRIing discovers andsbufly taple and uniform [26]. Except for the numeric 1D
semantic links to indicate relations between nodes Bm&l 506 the other types of ID space cannot guarantee both
topology to improve search efficiency. However, HRingqm o tapility and uniformity. But numeric ID space cannot
topology will be changed when adding semantic links, Whigy -ess the semantics of data objects, which makes Chord
will possibly increase the routing cost. Thus, the letpiadd  yiggic it in supporting complex queries. In contrast, theglon

semantic links to the network with the guarantee @y construction in HRing does not rely on the ID space
logarithmic routing hops and routing table size.
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which enables the data object IDs and node IDs tof la@y one dimension. So, the semantic data model can be pu into
type, such as number, string, date, and IP address. simplified 2-dimensional index (2DDI). Table 1 is the 2DDI
As a distributed platform to manage heterogeneosisucture corresponding to the 3-dimensional resourceespac
resources and support complex queries, HRing has #&lekeywords in the column, and all attributes and relagiin
following four advantages: the row are linearized. The linear space formed byjbates

1. Topology HRing topology can achieve high performancand relations is a kind of relation space since atgtuoan be
and low maintenance cost while guaranteeing remarkatad&en as the relations between data objects and keywidrds
robustness. linear space formed by keywords is a kind of keyword space.

2. Data management. The topology construction of HRingIn table 1, attribute,’s value of data objecid; andd; is v,.
does not rely on data type and data management mett{ddr,, d,) corresponds tos andv,, which means that, andd,
HRing does not aim at specific data types, specific ddtas rs relation, and the attribute,s value of d, iS
management methods, or specific query types. It cAttributes, values and relations of data objects camwftany
support the coexistence of heterogeneous resources. type such as string, number, date and IP address. HRing

3. Routing. The greedy routing algorithm in HRingupports the co-existence of different types of the relatio
guarantees logarithmic search performance. And, thgace and the keyword space as long as they can bézkaear
semantic link in HRing can further improve searchy a predefined order.
efficiency.

4. Complex query. Node IDs and data ObjeCt IDs in HR|r| Tsinghua‘ ‘ Jack ‘ |Tsinghua| ‘Mary‘ | ICT ‘ ‘A]ice‘ | ICT | |Mary|
preserve the semantics of data objects. Moreover, HR
allows the co-existence of multiple ID spaces. Sgait ~ Affilistion
support multiple types of complex queries.

V. 2-DIMENSIONAL DISTRIBUTED INDEX (2DDI)

This section introduces a 2-dimensional distributed ind
(2DDI) that supports both keyword queries and relation
guerieson HRing topology with high performance, scalabilit
and robustness.

A. 2DDI Sructure

Fig.4 illustrates the semantic data model for sevel '
heterogeneous data objects with their attributes, kejsvand [ 2007 | [Sigmod [Www |
relations. A, A,, Az and A can be XML documents or Web
pages of authors. Each author has two attribiNese and
Affiliation. TheName's values arelack, Mary andAlice. A, d
and A have the sameame. Theéffiliations’ values of A and
A, areTsinghua, and theAffiliations’ values of A and A are
ICT. Colleague relation exists between ;Aand A, and e,
between Aand A, Teacher-student relation exists between
A, and A. P, P; and B are three papers, théiitle's values
areChord, Tapestry andPastry. They have the same attribute
Keyword P2P. A, is theAuthor of P, and A is theEditor of
P;. A; is theAuthor of P,, and A is theEditor of P.. Azand
A, are theCo-authors of Ps. P, is published in conference, C
whose Name is SGMOD. P, and R are published in
conference & WM. Observe that ?A(i =123, 4)7 P(J =1, Fig. 5 The 3-dimensional resource space that stppomplex queries
2, 3), and ¢(k = 1, 2) are semi-structured, unstructured an
structured data objects respectively.

Users’ input may be keywords, attributes and relatio

Namg

Fig.4. An example of the semantic link network.

v
©

=y

nTéa\bIe 1. The structure of the 2-dimensional distiéd Index (2DDI).

Fig.5 shows a 3-dimensional resource space correspondin| = liionspeef - " " »
the triple of our semantic data model, where dimensionkewor space

denotes the linear keyword space, dimengodenotes the M

linear space of relations and attributes, and dinoandi i e

denotes the data object space. By using keywords, atgibt — ]

or relations, users can locate one set of desired mEsour— @ (e ‘Mi

Since there is no mapping between attributes and nedatio ' @) |
does not necessarily to use another two dimensions

attribute and relation respectively. They can be menged
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Table 2. An example of 2DDI.

relation space
a3 Affiliation AuthorOf Colleague EditorOf | Keyword | Name | Published in | Teacher-student | Title | Year

keyword space—
2007 ﬁ _ o
2008 . . 4
Aﬁce (A3/Name, P3) (A3/Name, A4) (A3y/Name, P2) A3

Beijing
Chord . (P1/Title, C1)
ICT A3, Ag P1
Jack {.Al-‘"Nan‘lc‘ P1) (A1/Name, A2) Al

Mary (A2/Name, P2), (A4/Name, P3) |(A2/name, A1), (Ad/name, A3) | (Az/Name, Pr) A2, Ad (A2/Name, A3)
P2P P, P2, P3
Pastry C1 | (P3/Title, C2)

Sigmod | ; | ! | B
Tapaitiy (P2/Title, C2)
Tsinghua ALA? | , . | F2
WWW | Lt |

Table 2 is the 2DDI structure built according to the Output A and A have this relation, and,A Name is
semantic data model in Fig. 4. The data objects whose Mary.
affiliation value is ICT are Aand A. The pairs of data (5) Relational query type 2.

objects that have AuthorOf relation are (Ry), (Az Py), (As, Input Name; = Jack AND Name, = Mary in keyword
P;) and (A, P;). The form of (A/Name, B) has two space and relation space
meanings: A and B have the AuthorOf relation; and;'A Output A’s Name is Jack, and A’s and A’s Name is

Name is Alice. So, 2DDI can clearly express the mapping Mary. A; and A is Colleague, and there is no relation
between attributes and attribute values, as well da da between Aand A.
objects and relations. (6) Relational query type 3.

2DDI allows search along both spaces separately or Input Name = Mary AND Affiliation = ICT and a
simultaneously according to specific query types. Search relationColleague in keyword space and relation space.
solely along the keyword space can answer multiple keywor Output A’s Name is Mary, Affiliation is ICT, Az has
queries. Search solely along the relation space can mnswe Colleague relation with A, and A’s Name is Alice.
multiple attribute queries. Search along both spaces can

answer relational queries. Observe that 2DDI is able to differentiate the relatioh

data objects that have the same attributes and a¢traliies.
Query Examples Compared with the Dataspace index in P2P context [7],
(1) Multiple keyword query. 2DDI has the following two advantages:
Input Sgmod AND 2007 in keyword space
Output G containing the two keywords.
(2) Range query.
Input Year [][2007, 2008] in keyword space and relation
space
Output G's and G's Year is within that interval.
(3) Multiple attribute query.
Input Name and Affiliation in the relation space
Output A, A,, Az and A, havingName andAffiliation,
where A’s Name is Jack, As's Name is Alice, and A
and A, have the samBame Mary, the Affiliation of A;
and A is Tsinghua, and theAffiliation of A, and A, is
ICT.
(4) Relational query type 1.
Input Teacher-student in relation space

1. The Dataspace index is designed for centralized personal
information service. Data objects are linearized th®
row, while the column is keywords with its
corresponding attributes and relations. Such a structure
is not appropriate for deployment and search in
distributed systems. In contrast, 2DDI is specially
designed for distributed networks. Data objects are
stored in nodes of their own, and 2DDI only maintains
the mappings of attributes, values and relations of data
objects.

2. The row in Dataspace index is data objects, so sésirch
only performed in the column. But the column only
consists of keywords and its corresponding attributes
and relations, so users cannot independently use
attributes or relations to search data objects like
relational query type 1-3. In contrast, 2DDI can perform
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search process in both dimensions, and support keywortackups ranges {kks] and (g, r;] of node D as well as
and relational queries. ranges (k ko] and (k, rg] of node G. G manages ranges, (k
q‘:g] and (r, ro], and backups € k;] and (g, r7] of F. The

. . eyword ID and relation ID of D iszkand g respectively.
comple_x than that in centralized systems due to thG'Sir)r;vi\llarly, the two index IDs of F ar;, land %’; ang the tV\)//O
operations of node’s join, departure and failure, al$ age index IDs of G are kand 5. When the new node E joins in
data object update and backup. The following will introduce etween D and F, F gives .its half index rangeskgk and (&

the construction method and the maintenance method 0?5] as well as the backup indexes of D to E. Meanwhile, F

2DDI on SemHRing. informs D and G to update their index backups. In this
B. Construction and Maintenance of 2DDI on SemHRing process, the index IDs of D, F and G are not changetiFa

. Lo . is gi two index IDs kand g according to its managed
Besides holding its own resources, each SemHRing nod 9Iven
is responsible for a range of index pointing to theusses index ranges. Observe that D, E, F and G are netwak ID

on other nodes. Since keyword queries and relational guerie
are routed along the keyword space and relation space, so . .
2DDI should be divided along the two dimensions and The r_elz?ltlons between data Ob.JeCtS are managed by, 2DDI
distributed among SemHRing nodes. Thus, SemHRing need@d building 2DDI on SemHRing can support complex

two index 1D spaces: the keyword ID space and the relatiorfueries. _The relations between nc_Jdes are determindaeby t
ata objects they managed. Since query messages are

ID space. Correspondingly, each SemHRing node has twi _ . L X
index IDs. One indicates the keyword range it manages, an rwarded among nodes, d|scover_|ng and b_undlng semantic
inks among SemHRing nodes will further improve search

the other indicates the relation range it managesrdsep/e o A .
semantics and support heterogeneity of data Objectsefflclency. For example in Fig.2, when node A issues ayque

SemHRing allows index IDs to be in any type and of anyf:]Jr theh %ata dolr:] node G, A can directly visits G witho
length as long as both the ID spaces can be lineabizexd throug andr.

predefined order. A. Design of Semantic Links

Additionally, to build SemHRing on HRing topology, . :
each node needs a network ID to organize nodes. Siiee P Ir_1 an HRing topo!ogy of sizen, each node has Iy
position intervals [33]:

networks are an overlay of TCP/IP, the network IDs aan b
IP addresses or URIs. Nodes are arranged into a ring

structure in order of network IDs. Note that network Hbe I _{
only used for new nodes to find their locations in S&imig. ' (
The long link construction in SemHRing is independent of

the network ID space and two index ID spaces. _ . €= 1 indicates that the successor of a node is ietdir
Below we introduce the operations of the new node’s join eighbor. For a given node A, ith position interval denotes
load balance and backup processes. The “load” inditaées 5 set of nodes that are at the ring-distance from Adeeger
‘index range” that each node manages. When a new nod@ané but smaller tha*.. We have proved that as long as
finds its predecessor and successor according to u®net  each node randomly selects a neighbor in each of ittiquosi
ID, the successor will transfer its half load of twadéx intervals, then HRing topology can achieve the logaiithm
spaces to the new node. In order to enhance ”etW0r|‘outing table size and routing hops [33].
robustness and improve search efficiency, neigharotes Based on Theorem 2 in [33], we can build semantic links
backup their two indexes with each other. Thus even if tWOamong SemHRing nodes using the following method. Each
neighbors fail simultaneously, HRing can still guarantee t  ode searches for the remote neighbors with centations
integrity of index spaces. The two index IDs of each rée i its |n() position intervals and build its semantic routing
the maximum values of the managed index ranges. Fofaple. Taking Fig.2 as an example, node A can determine
example in Fig.6, the keyword index space and the relationynich position interval node G lies in according to thisig
index space are denoted as two lines respectively.enher  gistance. Thus, A can build a semantic link to G and use it
dots denote the specific locations of certain keywordsgypstitute the existing routing table link in that interval. |
attributes or relations. Node D, F and_G are neighibtode this way, node A builds semantic long links without
D manages keyword rangey (k] and index range {y rs, changing its routing table size, and the search effigienc

while backups the keyword range,(k;] and index range 4r between nodes can also be kept.
r;] of node F. F manages ranges, (k;] and (g, r;], and

In distributed systems, the index maintenance is mor

VI. SEMANTIC LINKS ON SEMHRING

e =1 i=0
e.e"] i=12..[Inf)-:
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node D, F and G

F: £
relation ranges of /- DV _\/ (J\xh
I I: I;

node D, F, and G T

F 5
keyword ranges of / Dv _\A/_(J\Sh
ki @ ko ko

keyword ranges of /- D\'-” M \/'(’\5_-
k ks ks k- ke

node D, E, F and G

- ‘l F i
relation ranges of /D\ . M \/_G\A:)-
I & I's ta I

node D, E, F and G

Fig. 6. Anillustration of a new node’s join prese

According to Theorem 2 in [33], the necessary andaeift
In dynamic networks where nodes continuously join, condition to guarantee the logarithmic routing table sizé
depart and fail, there are two occasions for nodesutiol routing hops is that each position interval of SemHRing
semantic long links. In the first occasion when a made nodes maintains one and the only one remote neigfihbas,
finds its location and joins, it visits its consecutilven) once the new node finds a semantic neighbor in a gertai
nodes as well as their routing tables along the i#img position interval, it will stop finding the other semantodes
clockwise, selecting (Imj — 1) nodes as its remote neighbors even if there are other semantic nodes in that intefive.
among those fifn) nodes. Since the neighbors of those semantic long link construction algorithm ASNEW (Adds
consecutive Inf) nodes strictly follow the distribution of the Semantic long links on New nodes) is illustrated in Fig.7
position intervals, the distance between the new nodéh@n  The major difference between ASNEW and the original
neighbors of itskth consecutive node ik @+ €, k + € HRing algorithm ANEW is that ASNEW will preferentially

wherek = 1, ..., (Inf) — 1) andi = 1, ..., (Inf) - 1). As select semantic nodes as neighbors. If no semanticsnode
shown in the following equations, givérandi, the node at  exist, it will use ANEW to select neighbors.
the distance withink(+ €, k + €*'] from the new node will The second occasion to build semantic links is during the

be located in either of two neighboring intervalsteé hew  search processes. Taking the queries from node A toGode
node, thus it can be chosen as the neighbor in eifitieo  in Fig.2 as an example, we present the construgtioness
two intervals. For example, when+ €< €'}, the node at for semantic links. Through comparisons and validation in a
distance withinK + €, k+é*"] from the new node will be in query process, node A finds that only node G can exactly
the (+1)th or {(+2)th intervals of the new node, so the nodesreturn its desired student information, thus inferring #at

in that two intervals can be added as thd)th or (+2)th ~ and G has aeference relation. By measuring the distance
remote neighbors. The following function can illustrétie  from A to G, node A determines the intervathat node G

above observations. belongs to. After that, node A replaces the existinghimer
kKt <dl— k<e'log in I; with node G, thus building the semantic link from A to
, , o o G. Note that each interval is only permitted to have on
:>(k+e':k+e'ﬂ} u (e':e'ﬂJD (9”119”2} neighbor regardless of the number of semantic nerghibo
el <k+d <2 —=gd'l-d <k ?-¢g that interval. Semantic links are dynamic and updated
i ” 1 e e e according to query demands, obeying the least-recently-used
= (k+e k+e™]0 (e, ]0(e"%e"] algorithm (LRU). Fig.8 illustrates the semantic link
€2<k+e <cd?=d?2-g <k<e*3-¢ constriction algorithm, in which the span of a linlaisalue
:>(k+e‘,k+e‘*1} 0 (é*{é”]u(é“,é*“] ;/h;ﬁcé‘alfhat the length of the link is larger theélnand less
Theorem. In a SemHRing of size, the expected average
g@thn2 4 d <@t —y gtin-2_ o o < gitin-1_ g hops between any two nodegd@n(n)).

i i ez st el s Proof: we consider a SemHRing as a directed line gfttem
= (k+e k+e]O(e e ] O(e e ] The ith position interval of a given node denotes a set of
For a given new node, ¥n) remote neighbors of its IN{  nodes whose position distance to it is witrgit,(€] for i = 1,
consecutive successors are distributed in itsn)In{ 1) 2, ..., In), and e is the first interval including only one
position intervals. Each position interval may contairreno node, i.e., the successor of node A. Each node has oely o
than one remote node. When updating the remote neighbor ineighbor in each of its interval. Since the distanesvben
each interval, the new node will preferentially seltot any two nodes is less tham we take the worst case where
semantic node and build a semantic link. If no such semantitwo nodes A and B with distanca £ 1) as an example to

nodes exist, the new node will select and update neighborcompute the routing hops. Lag be (i — 1). Since node A
by the inverse of the distance based on the HarmomiesSe has one link at each of its interval, the lengthhefidh jump
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is larger than ¥times the current distaneg, (k = 1, 2,...,
In(n)). After thekth jump, the remaining distanceris< (1 -
1/2) n.4. Then, by iteration, we can obtaid(In(n)) average

routing hops.

# Input: Given a new node A, CurrentVisitNumber denotes the number
of visited nodes, VisitNumber denotes the total number of nodes that
should be visited, Currentn means the estimated number of nodes in
SemHRing. ¥/

/* Output: node A’s routing table */

Set a large value to the imitial Currentn;

steps = 0;

CurrentVisitNumber = 0;

do{//visiting nodes along the ring in clockwise;

steps ++;

Visiting node Ni whose position distance [rom A is steps;

CurrentVisitNumber —;

Currentn = min{ Currentn, Currentn from Nil;

VisitNumber = In{Currentn);

suce_add = AddNeighborBySteps(sieps, Ni);

If (suce_add == 0){//visiting the routing table of Ni

for each neighbor Rij of Ni{

Dist = position distance from A to Rij;

v =In(Dist); //Rij can be the vth neighbor of A

/if A already has a neighbor Sv in Iv, existDist is the length

{/of the out-link

if{existDist =— 0){

existDist = Dist;
add Rij as the vth neighbor ol A;
tlend if

else

if(Rij has a semantic relation with A){
replacing Sv in fv with Rif;
existDist = Dist;

tilend if

else {//no relationship between Rij and A
/A choose Rij as the vth neighbor with the probability
llAdding_prob
Adding_prob = (1/Dist)/((1/existDist) + (1/Dist));
generating a random decimal x from [0,1];

il (x < Adding_prob){/ichoosing Rij

l replacing Sv in /v with Rij;
existDist = Dist;

tifend 1f

Y ilendelse

Yy /endclse

Y }endfor

\ Vilend if

ywhile( VisitNumber = CurrentVisitNumber)

Fig.7. Semantic long link construction on new nodes

/* anode A issues queries for building semantic links, node B replies to A,
A then adds B as a neighbor at a proper interval®/
M Input: Given a node A, and its routing table Ra, */
/* Output; node A’s routing table Ra*/
Dist = position distance from A to B;
v = In(Dist); //B can be the vth neighbor of A
if{ A has no neighbor in the vth interval fv){
add B as the vth neighbor of A:
tlend if
else// if A already has one neighbor Nv in the vth interval /v
1f( Vv has no semantic relationship with A){
replacing Nv with B;
+iend if
clse if (Vv has semantic relationship with A, but currently A needs the
answers from A)}
replacing Nv with B;
{/fend else
Lffend else

Fig.8. Semantic long link construction during séapcocess.

B. Node Join, Departure and Failure

In a dynamic SemHRing, nodes continuously join, depart
and fail. Nodes keep track of their neighbors by periolical
probing them to guarantee the routing performance in
SemHRing.

When a new node is to join a SemHRIing, it should abnta
at least one existing node as its bootstrapping nodehwhi
helps it to find its position in SemHRing. A new nodenjoi
procedure is equivalent to a query routing for the node ID,
thus takingO(In(n)) hops. After the new node locates its own
position, it begins to fix its routing tables. It prefetially
adds the semantic nodes as its neighbors in each of its
interval. The neighbor selection process is desciiib&dg. 7.

When a node A is to depart, it needs to transfer all
resources, including the data objects, the ranges of kdywor
index and relation index, as well as its in-links and ouslin
to other proper nodes in order to guarantee the integfity
the two index spaces and the efficiency of the routing
performance and routing table size. The departing node A
will consider preferentially transferring its resowgd® its
successor C. Two situations will be considered.

*Given a departing node A and its successor C, A transfers all its data as
well as its in-links and out-links to C. Then the in-hink routing table size
and the out-link routing table size of node C have become 2In(n).*/
*Input: node C's in-link routing table Ry, = {N;Na.....N,} and out-link
routing table Ry = {M| .M. M}, 1 = 2In(n); I;, and 1, are two character
arrays with size In(n) and initial values all being C */
A0utput: after the long link section, node C's in-link routing table
Rin= {NLNa,. . GNGband out-link routing table Ry, = (M My, M.},
s =In(n) *
{frebuilding in-link routing table of node C, i.e., the selection of In(n)
in-links from 2In(n) in-links:
fori=1tot]
spanc(N,) = in-link span from in-neighbor N;to C;
ir{[ill(span("N-:)j - (1)
Lia(spanc(Ny)) = Nz
else
if{ 1i(spanc(N,)) has no relationship with N;)
|i-.|(5P3“{‘(Nr)) =Nj
{/{for in-link selection
//rebuilding out-link routing table ol node C, i.e., the selection of In(n)
{fout-links [rom 2In(x) out-links;
fori= 1 tot{
spanc(M,) = out-link span from C to out-neighbor M,
if {_luul(span[_i( M)} = CJ
La(spanc(M;)) = M;;
else
il (Lu(spanc(M,)) has no relationship with M;)
Luspanc(M;)) = M;;
{ifor out-link selection
fori=1tos{
Riu“) T [in“);
Riud§) = La(£):

J
Fig.9. The long link update algorithm.

In the first situation, if receiving the resourcesnotle A
will not lead to the overload on its successor C, tGewnill
receive all the resources of A. Thus, the number ofiksli
and out-links in C will increase to 2imM( Doubling the
number of links does not benefit the routing scalghili
instead, it will decrease the scalability of the nogttable
size. Thus, in this situation, we should consider how to
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reduce the 2Im) in-links and out-links to In(). Moreover, C
should choose only one link in each of its interval arwll

will not affect its structure and the routing performoan

Since semantic links exist between nodes, the loaahbal

preferentially choose the semantic links. The long link strategy in SemHRing should reserve the semantic ne¢atio

update algorithm for node C is illustrated in Fig.9.

as much as possible and reduce the transfer of semak8c li

In the second situation, if receiving the resources deno The leave-and-rejoin method will incur topology change

A will overload A’s successor C, then A will globallglect
a lightly loaded node B, and transfer all its resoutoeB.

The selected node B needs to leave the network and thdmks between neighbors.

rejoin as the successor of A by a new ID. In this wage B

can replace the position of A to manage all its resowands

when nodes leave and rejoin and rebuild their routies.

In contrast, neighboring load balance only needsaoarge
Thus, the number of links
transferred by neighboring load balance is fewer thantiia
leave-and-rejoin load balance.

preserve the semantic integrity of nodes and data objects The load balance algorithm in SemHRing combined the

thus guaranteeing the search efficiency. In the leave-andadvantages of above two methods.

rejoin process, B will transfer all the resources it®
successor. So the precondition for B to leave amrrd$
that receiving the resources of B will not leadite bverload
on its successor, which will avoid the recursion inlédaae-
and-rejoin process.

It contains two stages.
First, when a node B is overloaded, it will first connist
predecessor A and successor E to judge if they will be also
overloaded after node B gives its half load to node Aoden

E. If one of them is not overloaded, then A will gite half

load to it. If neither of A and E is able to receB& load,

SemHRing uses the same strategy as HRing to deal witthen we adopt the leave-and-rejoin method to globalbcsel

node failure problem [33] .

C. Semantic Link Maintenance.
In SemHRing, each node should havenjrdut-links and

In(n) in-links in its Inf) intervals. Only in this way, the long

link distribution can be balanced. The long link camiion
process may make each node equipped with) lot-links,
but it cannot guarantee to equip each node witt) in¢links.

a lightly-loaded node D. Node D first needs to leave the
SemHRing with its links transferred to its predecessud
successor, then it rejoins the network and locatef ater
node B using a new ID C. After that, B gives half lbadC,

and the semantic links pointing to the moved load should
also transferred to C. So, B and C should rearrange-its
links and out-links to guarantee the logarithmic routing hops
Finally, C needs to construct its routing table asva mede

In fact, as discussed in [33], when a new node joins, g 0 does, which cost®(In(n)).

link adding probabilities for all existing nodes are not
uniform. Thus, the long link construction for new nodes wil
incurs in-link skew among existing nodes. To balancerthe

VIIIL. SIMULATIONS AND ANALYSIS
This section uses simulations to analyze the influaice

link distribution among nodes, an algorithm in SemHRing isthe semantic links on the routing table size, the mguitiops
proposed based on the in-link transfer in HRing. Eadeno as well as the long link distribution. We will compahe t

will compare its number of in-links with its successotfst
has more in-links than its successor, it will ask the essmr

to share some with it. Note that we do not transfer t

semantic links in the in-link balancing process. Théink
transfer algorithm in SemHRing is described in Fig.10.

/*Given a node A and its successor S, as well as A’s in-link routing table
Rin, computing each in-link span to A and to S respectively, then
selecting the in-neighbors that do not have semantic relationships
to node A and transferring them to S*/

/*Input: node A, node S, and node A’s in-link routing table R;, =
IN,N,....N,} including ¢ in-neighbors */

/*Qutput: the candidate in-neighbor set Cy, = {N;} that can
be transferred from A to S */

fori=1tot}
spana(N;) = in-link span from in-neighbor N; to A;
spang(N;) = in-link span from in-neighbor N; to S;

h

j = 0;//a counter to record the size of the candidate in-neighbor set

forj=1tot{
if(spans(N;) = span(N;) && N; has no semantic relation with A)

. (\in(jrI |,) i Nr:

Fig.10. In-link transfer algorithm.

VII. LoAD BALANCE ON SEMHRING

SemHRIing inherits the merit of HRing to support leave-

and-rejoin load balancing without incurring uneven lang |

distribution. Thus, performing load balance in SemHRing

routing table size and the routing hops on HRing and
SemHRIing of the same size under both static and dgnami
environments. We will first build a HRing topology, atheén
add semantic links on it and evolves it into SemHRing.

In a static network, the network size is fixed. Nodesa@to n
depart or fail after they have completely joined aninfa
perfect network topology. The goal of simulating theistat
HRing and SemHRing is to study their efficiency and
scalability in an ideal environment. We first buildrawgp of
static HRingsof sizen from 1G to 1¢f, and use 26 English
characters to randomly generate node IDs of fixed leBgth
Nodes are organized into a ring according to the stnidgr
of node IDs. Each node adds long links to its routing table
following the routing table construction method of HRing.
For each node, we assume that there are 0 deMmantic
nodes in HRing. We do not simulate the process of
discovering semantic nodes since the discovery process
relates to a specific application. Here, we only sineutae
process of building semantic links after discovering the
semantic nodes. Such a process is illustrated in FigyA.1F
shows that the average routing table sizes in HRing and
SemHRIing are almost the same, but the average hops in
SemHRIing are apparently less than that in HRings, thus
indicating that building semantic links will improveaseh
efficiency.
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To simulate the real dynamic environments, we design a Below we analyze the out-link distribution and in-link
growing HRing and build long links on it by ANEW distribution in a growing SemHRing. Fig.13 shows that the
algorithm. Initially, there is only one node. When a mae out-links exhibit poisson distribution, indicating that nodes
joins, it will contact an existing node for bootstrappiAfer have almost the same number of out-links, while thi&in
locating itself, it adds long links by travelling théele ring distribution is skewed, indicating that most nodes onkeha
clockwise. Once finishing flooding, its routing table is a small number of in-links but a few nodes have large
established. After that, it will not consider subseques number of in-links. The skewed in-link distribution wticur
nodes and do not add new long links to them. For ead, no the unbalanced workload in SemHRing such that a few of in-
we randomly select O to In( nodes as its semantic nodes in link-rich nodes will be much busier in handling queries
HRing. We simulate the process of replacing the exitingbecause more out-neighbors pointing to them than &rath
links with the semantic links (see Fig.8). Fig.14 shows that after applying the in-link transfer hodt

Fig.12(a) shows that in the growing HRing and in SemHRing, the in-link distribution can be balanced.
SemHRIing of the same size, the average routing téde s Fig.15 shows the comparisons of the average routing table
are almost the same. But under the circumstance cfatime  sizes and the average routing hops in SemHRing befate a
cost for the long link construction, the average routiogs after using in-link transfer algorithm. The simulati@sults
in SemHRing is clearly less than that in HRing. Thusait show that the in-link transfer algorithm does not infleenc
be concluded that semantic links play a positive role onthe scalability and efficiency of SemHRing.
routing performance.
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—+— static HRing T —#— static HRing
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Fig.11. The average routing table size and thesmehops in the static HRings and the static SemgkRi
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[12]
IX. CONCLUSION

This paper proposes a structured P2P Semantic Linkgs;
network SemHRing that uses the semantic link network as
data model to support complex queries on decentralized
heterogeneous resources and adopts the structured P
topology HRing to ensure high performance and low
maintenance cost. Two levels of semantic relatiores ar [15]
considered relations between data objects and between
nodes. A two-dimensional distributed index 2DDI is built on
an order-preserved structured P2P network with semantig g
links constructed among nodes to facilitate efficient
relational queries. 2DDI enables SemHRing to organize
attributes, keywords and relations on data objects in
uniform manner. Semantic links on SemHRing represent the
semantic relationship between nodes, and optimize the
topology of HRing to improve search efficiency. [18]
Experiments show that SemHRing is scalable, efficamd 19]
robust. SemHRing can support both relational and reldtiona
gueries. It can be as a feasible solution to supportiegffic  [20]
and decentralized semantics-rich queries.
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