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Abstract:  Establishing an appropriate semantic overlay on Peer-to-Peer networks to obtain 

both semantic ability and scalability is a challenge. Current DHT-based P2P networks are 

limited in their ability to support semantic search. This paper proposes the DST (Distributed 

Suffix Tree) overlay as the intermediate layer between the DHT overlay and the semantic 

overlay. The DST overlay supports search of keyword sequences. Its time cost is sub-linear with 

the length of the keyword sequences. Using a common interface, the DST overlay is 

independent of the variation of the underlying DHT overlays.  Analysis and experiments show 

that DST-based search is fast, load-balanced, and useful in realizing accurate content search on 

large networks. 
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1. Introduction 

1.1 Motivation 

With the development of the Internet and various communication networks, decentralized 

information sharing is showing its potential and advantages.  To incorporate scalability and 

semantics into decentralized information sharing systems is a challenge. 

Peer-to-Peer (P2P) networks support scalable decentralized information sharing.  There are 

basically two types of P2P network: structured and unstructured. In unstructured P2P systems like 

Freenet [4], Gnutella [13] and Napster [23], there is no assumption about the assignment of data 

onto peers. Each peer manages its own data, and no global view of data exists in such networks. 

Many approaches to improve the efficiency of data lookup in these systems have been proposed [5, 

33]. In structured P2P systems [17], data items (or indexes of data items) are assigned onto peers 

according to some rules.  One type of structured P2P systems distributes data items onto peers via a 

Distributed Hash Table (DHT) [15, 16] like Can [24], Pastry [26], Chord [28] and Tapestry [34]. 

DHT-based systems largely solve the problem of scalability since each lookup of a data item can be 

resolved within O(log n) (or O(n1/d )) overlay routing hops for a network of n peers. But the major 

limitation of the early DHT-based systems is that they are based on exact identity matching. Most of 

such P2P systems are limited in their semantic ability to support intelligent applications, for example, 

the content search, which is based on the relationship between words rather than isolated words. 

Establishing an appropriate semantic overlay on P2P networks is a way to acquire both 

scalability and semantic ability to support intelligent applications on large-scale networks.  A first 

step towards such an overlay is to establish various distributed data structures. 

Our approach is to establish a Distributed Suffix Tree overlay on the DHT-based systems to 

realize efficient keyword sequence search, which is needed in many applications, for example, 

search papers distributed on P2P e-science network according to the given title, abstract or keyword 

sequence representing the content. 

 

1.2 Approach Overview, Features and Applications 

In real P2P networks, each resource has a string descriptor. The proposed Distributed Suffix Tree 

(DST) approach uses the suffix tree algorithm [21] to reorganize string descriptors to form a global 
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suffix tree data structure, and distributes each edge of the global suffix tree onto the peers in P2P 

networks. When a lookup is initiated, the search process follows the path from the root of the global 

suffix tree to the next node satisfying this lookup, and then to the next node onwards until it reaches 

the nodes where the target resides. 

The DST approach has the following features: 

(1) It is decentralized, scalable and load balanced. 

(2) It maintains the sequential relationship between indexed keywords, which offers more accurate 

meaning than isolated words. Its lookup time cost depends on the length of the input string and 

the type of the DHT-based lookup protocol. It is especially suitable for search with lengthy 

keyword sequences. 

The DST approach can be used to implement the basic functions for many applications such as: 

(1) P2P file sharing systems [8]. Search is the basic function of P2P file storage systems. The DST 

approach enables users to find appropriate files by a series of words describing title or abstract. 

(2) Peer Data Management Applications [11, 17]. This type of applications mainly focuses on the 

XML-based complex queries and heterogeneous data integration. The DST approach can 

facilitate the processing of complex queries. 

(3) Large-scale Text/String analysis and processing. When the text/string to be analyzed is too large 

to be processed on a single computer, the DST approach can decompose the large text and 

distribute it onto peers for processing. 

(4) Semantic Link Applications [35, 36, 37]. By publishing the semantic objects as indexing nodes to 

form distributed indexing structures, queries can be forwarded along the chains of semantic 

object pointers to search for data objects indexed by their keys. The DST can be a substrate of 

the semantic overlay. 

 

1.3 Related Work 

The system Brushwood [32] gives a general paradigm for distributing tree data structures onto P2P 

networks. It preserves the data locality by linearizing the tree node in pre-order and assigning each 

partitioned consecutive segment to a peer. This work is suitable for locality sensitive applications. 

SkipIndex [33] proposes a distributed high-dimensional index structure and routing scheme based on 

P2P overlay routing. It supports efficient similarity search and range queries for high-dimensional 

data by guaranteeing logarithmic lookup and maintenance cost even facing skewed datasets.  
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There are typically three index solutions to distributed keyword search: partitioning by 

document, partitioning by keyword, and hybrid indexing. In the first solution, each node is 

responsible for a number of documents. During search, the query is broadcast to all nodes which will 

complete the query locally. The search results will be aggregated and returned to the user. The 

second solution requires that each node maintains an inverted list of documents for each keyword it 

is responsible for [6, 12, 20, 25]. To answer a query with multiple terms, the query will be sent to the 

nodes responsible for those terms. The inverted list returned by the nodes will be joined and returned 

to the user. The third solution combines the former two and gives a hybrid indexing structure [29]. It 

gains the search efficiency and reduced bandwidth usage by sacrificing storage space. Unfortunately, 

although can take further operations, these works consider the keywords separately and do not take 

the relationship between keywords into account. And the relationship is needed in some contexts. 

For example, applications may want to search with a phrase. The keyword sequence search of the 

DST approach gives the user an ability to order which keywords should appear sequentially in the 

document. This ability is needed in many applications, for example, search papers distributed on P2P 

e-science network according to the given title, abstract or keyword sequence representing the 

content. 

The exact-match mechanism of hash indexes is used as a substrate for textual search in Harren’s 

work [14]. The approach splits each string into “n-grams” (i.e., distinct length-n substrings), and 

then indexes these n-grams on the DHT overlay. For each n-gram gi, the pair (gi, DHT_key) is 

inserted into the hash index by the key gi. The n-grams strategy has a good performance in substring 

search as it can decrease the number of irrelevant results. However, the “n-grams” prevents search of 

substrings whose length is less than n. 

The Prefix Hash Tree (PHT) [3] is designed to support range queries on an underlying DHT 

overlay. This approach hashes the prefix (i.e., the label of one node in the PHT) of a key in the DHT 

identifier space. Some corresponding algorithms are proposed to implement the lookup and range 

query operations. Also, multi-dimensional range query is supported by mapping multi-dimensional 

data onto a single dimension via linearization. However, while it gets the range query ability by 

assigning prefix onto DHT, it loses the properties to be extended to support keyword searches.  

Some information retrieval techniques have been applied to the indexing method in structured 

P2P networks. In [27, 31], the content of documents is processed to compute the keys used in 

structured P2P systems. These techniques extract a vector of keywords from each document, and 
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typically, the keywords are selected according to the frequencies of their appearance. Then, the 

vector describing each document is used as the key to map the documents into the virtual 

multi-dimensional space of the network. However, the extracted vector has much higher dimension 

than the virtual space of the network. Thus, techniques for dimensionality reduction are required. 

Such a reduction should keep a minimal distortion, that is, the distance of the new vectors with the 

reduced dimensions should approximate the distance between the initial vectors. 

The above approaches use the flat text description as the underlying data format, while others [2, 

10] use XML to represent data. When using XML, both value and path indexes are needed for 

addressing the content as well as the structure of documents. And, these approaches focus on solving 

the problem of schema-based search. The keyword-based search techniques can work in cooperation 

with these approaches to realize more search types. 

2. The System Model 

The architecture of the DST-based system is shown in Figure 1. The Distributed Suffix Tree Overlay 

is the intermediate layer between the DHT overlay and the semantic overlay that supports high-level 

distributed intelligent applications.  The bi-direction arrows represent information exchange 

between layers.  A lower layer provides services for a higher layer. 

 

Figure 1. Architecture of the DST-based system. 
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The Distributed Suffix Tree Overlay supports the following keyword search services: 

 Single keyword search — Given one keyword A, the DST approach returns a set of DHT keys 

associated with texts that contain A. 

 keyword sequences search — Given keyword sequences like ABC, the DST approach returns a 

set of DHT keys associated with texts that contain ABC. 

 AND, OR, and NOT operations on the above two searches, for example, a search can take the 

following forms: “A AND B”, “A OR BC”, and “NOT A”. 

The application interacts with the DST mainly in two ways. First, the application delivers the 

tuple (text, DHT_key) to the DST for processing and indexing. The application is responsible for 

providing meaningful, summarized, and well-described text of the resource associated with the 

DHT_key. Second, the DST provides Search (keyword expression) as the interface that yields the 

DHT_keys of the texts satisfying the keyword expression. 

The DST approach constructs a global virtual suffix tree overlay using the texts delivered by 

applications. It simplifies the design of applications by supporting a fast and reliable keyword search 

service with the following features: 

 Decentralization — The DST approach does not need any superpeers. No peer is more important 

than any other. So it is able to deal with the situation that peers join and leave frequently. 

 Load Balance — The DST approach never makes any superpeers. It scatters and distributes the 

virtual suffix tree evenly on each peer by using the DHT which is load balanced in nature. 

 Scalability — The DST approach takes the DHT overlay as its substrate, which in turn makes it 

scalable even in large P2P networks. Additionally, its search cost only depends on the keyword 

expression and the DHT-based lookup protocol, not on the number of the involved texts. So it is 

suitable for even very large systems. 

 Speed — The DST approach supports fast search.  After optimization, its time cost is less than 

O(T + m) and has an upper bound of O(T + lgn), where T is the lookup cost of the underlying 

DHT overlay, m is the length of the keyword sequence and n is the maximum length of the 

indexed texts. 

3. The Basic DST Approach 

The DST approach consists of three basic parts: (1) the method for constructing the virtual 
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distributed suffix tree; (2) the search mechanism for results satisfying a given keyword expression; 

and, (3) the maintenance operations like inserting a tuple (text, DHT_key) into the DST overlay and 

deleting a tuple from the overlay. 

3.1 Suffix Tree 

Suffix tree is an efficient string matching solution [21]. To search a string of length M in a text of 

length N, a suffix tree only needs M comparisons—this is clearly the minimum comparison to finish 

a search. The word ‘suffix’ here refers to the fact that suffix tree T contains all the suffixes of a given 

text S.  Suffix tree T has the following attributes: 

(1) An arc may represent any nonempty substring of S. 

(2) Each nonterminal node, except the root, must have at least two offspring arcs. 

(3) The strings represented by sibling arcs must begin with different characters. 

To construct a suffix tree, the given text S needs to satisfy that its final character should not 

appear elsewhere in S.  This can be realized by simply appending a unique character to S. 

The construction of a suffix tree begins with an empty tree T0 and then enters paths 

corresponding to the suffixes of S one at a time, from the longest to the shortest. Take a string S 

(“ababa”) as an example. Because S does not fulfill the requirement of suffix trees, a unique 

character $ is appended to the end of S. The tree T corresponding to our example string S would be 

constructed by the algorithm in the steps shown in Figure 2, one step per suffix of S. Here, we omit 

the suffix “$” in the suffix tree, as it is just a placeholder without any meaning. 

Let suffixi be the suffix of S beginning at character position i. During step i, the algorithm 

inserts the path corresponding to the string suffixi into the tree Ti-1 to produce tree Ti. To insert suffixi, 

a search for suffixi is performed on tree Ti-1 and eventually fails at some character position of some 

arc. We define headi as the characters in suffixi that have been matched during search, and define 

taili as suffixi − headi. In our example, suffix3=aba$, head3=aba, and tail3=$. A new nonterminal 

node is constructed to split the failing arc if necessary, and finally a new arc labeled taili is 

constructed from that nonterminal node to a new terminal node. 

The construction of the generalized suffix tree for more than one string carries out in the same 

process, except that T0s for the second and later strings are not empty tree and each arc may be 

marked to indicate to which strings it belongs. Figure 3 shows an example of the insertion process of 

string “cab$”, where T0 is not an empty tree but a suffix tree for “ababa”. 
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Figure 2. The suffix tree construction for “ababa”. 
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Figure 3. The suffix tree insertion for “cab$”. 

The deletion of a string S’ from a generalized suffix tree is the reverse process of the insertion, 

so we can take the reverse order of figure 3 as the example of deletion. It processes paths 

corresponding to the suffixes of S’ one at a time, from the shortest to the longest. The process 

involves two operations: (1) deleting arcs that are marked belonging solely to S’, and (2) linking 

in-arcs and out-arcs of nodes that have only one child. 

3.2 Indexing 
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Before deploying a suffix tree onto the P2P network, we firstly extend the suffix tree to support 

keyword search by replacing the alphabet with a vocabulary. In other words, instead of sequences of 

letters, the DST approach uses suffix trees over sequences of words. And as a upper level overlay 

upon DHT, the DST approach need the key_to_peer(key) interface provided by the DHT overlay.  

Every search process starts at the root edges of the DST.  So, when a search request comes, the 

DST approach must know where to find the root edges. One way is to store all root edges at one peer. 

Then, the DST approach retrieves the root edges from that peer every time. This is simple, but 

sacrifices the load balance, and the peer storing all root edges becomes the bottleneck of the whole 

system.  

The DST approach takes the following way to store the root edges to solve the above problems:  

For each root edge, 

(1) draw out the initial word w of the root edge e, and take w as the key of e; and, 

(2) use the DHT overlay’s key_to_peer(key) interface to get the peer p responsible for w, and store 

the root edge e on p. 

From the way of storing root edges, we can see that the DST approach works similarly to the 

inverted list approach [25]. The bottleneck never exists as the root edges are distributed to various 

peers. An example of storing the root edges of T5 in Figure 2 is shown in Figure 4. The Chord [28] is 

used as the underlying DHT overlay. And, notations such as ‘a’ and ’b’ in suffix tree are replaced 

with their upper cases in order to reflect the changes from suffix tree to DST. The root edges of T5 in 

Figure 2 are A and BA. For BA, the initial word B is taken as the key. Suppose that the calling of 

key_to_peer(B) returns Peer3 according to Chord, BA will be stored at Peer3 responsible for key B. 

From figure 4, we can also see that some other information has been stored with the edges. The 

information will be used to route search requests. They compose a routing entry (see Table 1) 

together in the following form: (Key, Edge, ChildKey, DHT_keys). Key is used to identify a group 

of edges being the children of the same parent edge, but for the root edges, Key is the initial word. 

ChildKey is a globally unique DHT key used as the Key of its children edges. It is computed by the 

peer responsible for the edge. For the leaf edges, ChildKey is −1. The uniqueness of ChildKey can 

be ensured by using some techniques such as UUID ⎯ Universal Unique Identifier for uniquely 

identifying object or entity on the Internet. The computing mechanism of UUID relies on the 

network address of the host, a timestamp, and a randomly generated component for ensuring the 

uniqueness. Edge is the substring represented by the edge. The last field is DHT_keys, a key set that 
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contains all the DHT_keys of texts having one suffix that can match from the root to the current Edge 

Key Edge ChildKey DHT_keys
A A 2 h(ABABA$)

Key Edge ChildKey DHT_keys
B BA 5 h(ABABA$)
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3

2

 

Figure 4. Root edges in DST using Chord as DHT overlay. 

 

Table 1. Variables for routing entry.  

Variable Description 

Key The DHT key for the Edge 

Edge String representation of the edge 

ChildKey The DHT key for the Edge’s Children Edges 

DHT_keys The DHT keys of texts having one suffix that can match from root to the Edge 

 

After the root edges are distributed onto the DHT overlay, the Key fields of the edges in other 

levels can be obtained iteratively, as their Key fields are equal to the ChildKey fields of their parent 

edges. Each edge is stored at the peer responsible for its Key field. In this way, all edges in a suffix 

tree are distributed onto the DHT overlay. Figure 5 shows the DST of T5 in Figure 2 when all its 

edges are distributed onto the Chord overlay. 
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Figure 5. DST distribution of ABABA$ using Chord. 

 

An indexing approach should guarantee that the search process can locate the targeting results 

correctly. The correctness is examined in the following. 

PROPERTY 1. A Key field together with the initial word of an Edge field can exclusively 

determine one entry. 

PROOF. This property can be proved by the following two aspects: (1) Neither of them can 

exclusively determine one entry. As described above, the edges having the same parent edge share 

the same Key, thus, Key cannot exclusively determine one entry. The edges having the same parent 

never have the same initial word of Edge according to the suffix tree algorithm, but those that do not 

have the same parent may have the same initial word of Edge, for example, there are four edges in 

T5 in Figure 2 having the same initial word B; this means the initial word of Edge also cannot 

exclusively determine the entry. (2) The Key and the initial word of Edge can determine the entry. 

Each Key is a global unique DHT key, only the edges having the same parent have the same Key; 

this means Key can determine a group of edges that have the same parent. And, two arbitrary edges 

in this group must have different initial words of Edge according to the suffix tree algorithm; this 

means if in this group, the initial word of Edge can determine the edge. As they are combined 

together, the Key and the initial word of Edge can determine the edge, i.e., the entry.  (End of 

Proof) 

PROPERTY 2. The DST approach can compose a real suffix tree by iterating over the whole P2P 

network. 
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PROOF. Each entry in DST has a pointer called ChildKey pointing to its children entries, so given 

one entry, we can get all its children entries. All root entries satisfy that their Keys are equal to the 

initial words of their Edge fields. We can get all root entries by traversing the P2P network to find 

entries that conform to that characteristic. According to the above two inferences, the tree-structured 

entries of the DST can be retrieved by iterating from root entries to leaf entries and then compose a 

real suffix tree. (End of Proof) 

Property 2 ensures that the DST has the same structure that a common suffix tree has, so it 

reserves some good properties from the suffix tree, such as the ability for searching and maintaining 

sequential relationships between words. 

3.3 Search Process 

The DST approach supports single keyword search, keyword sequences search, and the AND, OR, 

NOT operations of the above search types. Single keyword search is a special case of keyword 

sequences search, and the third type is based on the former two. Therefore, we first explain the 

keyword sequences search process, and then the others. 

Consider a given keyword sequences: (A1A2A3…An). The search process begins with drawing out 

the initial word A1 and taking it as the Key K1. Plus the initial word of root Edge, (K1, A1) can be 

obtained. According to Property 1, there is only one entry corresponding to (K1, A1). The search 

process locates this entry by the following two steps: (1) the peer p storing this entry is located by 

calling the DHT overlay’s interface key-to-peer(K1), and (2) on the peer p the entry is located by 

searching the entry whose Key field and the initial word are equal to K1 and A1 respectively. Suppose 

the Edge field of this entry is B1B2B3…Bm, if A1= B1 and A2= B2 … and Am= Bm, then (ChildKey, 

Am+1) becomes the Key and the initial word of the Edge for the next entry. Continue these steps 

recursively until An is reached, then return the DHT_keys fields of the ending entry. If any step or 

condition in the process fails, the whole search fails and ends with no matches found in the DST 

overlay. 

The algorithm that implements the above search process is shown in Figure 6. The notation 

peer.foo() denotes that the function foo() is invoked and executed on peer. Remote calls and variable 

references are preceded by the remote peer identifier peer, while local variable references and 

procedure calls omit the local peer. Thus peer.foo() denotes a remote procedure call on peer, while 

peer.bar without parentheses is an RPC to lookup a variable bar on peer. 
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seq_multiple_search is the interface for keyword sequences search, it works by calling 

process_search, which recursively calls itself to process the keywords. 

process_search is recursively called until the words in the keywords parameter are exhausted, 

and each calling will truncate at least one word from the keywords. If one remote procedure call is 

regarded as one step of the search process, the DST approach can finish one keyword sequences 

search within m steps, where m is the length of the keyword sequences. However, this does not take 

key_to_peer into account. key_to_peer is supported by the DHT overlay, thus the time requirement 

depends on which DHT overlay the application selects, for example, it is O(log n) for Chord and 

O(n1/d) for CAN. Suppose T is the time key_to_peer uses, the time cost of the DST approach for a 

keyword sequences search is within m×T. And, the time cost can be further reduced to T+m, which 

will be discussed in section 4.1. 

The AND, OR and NOT operations of the keyword sequences search are other types of search 

supported by the DST approach. The basic idea for solving these problems is to get each result set of 

the keyword sequences search and then calculating the AND, OR and NOT operations on the result 

sets correspondingly. For example, suppose the keyword expression is A1A2…An AND B1B2…Bm, the 

seq_multiple_search should be called first to get the result set KeySet1 and KeySet2 for A1A2…An and 

B1B2…Bm. Then use the set intersection operation on KeySet1 and KeySet2 to get the final result set 

for the keyword expression. 

Some techniques of query optimization can be used to reduce the bandwidth consuming and 

improve the search efficiency of the AND, OR, and NOT operations. When all the result sets are 

returned to the initial peer for further processing, the bandwidth consuming is the total size of all the 

result sets, i.e., |KeySet1 | + | KeySet2 |. But if we transfer the smaller result set to the peer responsible 

for the larger result set for preprocessing, the bandwidth consumed can be reduced.  For example, 

suppose  |KeySet1| < |KeySet2| and the respective responsible peer is Peer1 and Peer2, Peer1 first 

transfers KeySet1 to Peer2, then the intersection of KeySet1 and KeySet2 is finished on Peer2 and 

returned to the initial peer. In this way, the bandwidth consuming is reduced to | KeySet1 | + | KeySet1 

AND KeySet2 |. 
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Figure 6. Search algorithm for matching a given keyword expression. Remote procedure calls and 

variable lookups are preceded by remote peer. 

3.4 Tuple Insertion and Deletion 

When a resource is published, the upper-level application is responsible for inserting the tuple (text, 

DHT_key) into the DST overlay for indexing. Then the tuple insertion process is initiated. For each 

suffix of the text, the DST initiates a search request taking this suffix as the keyword sequences in 

order to add DHT_key to DHT_keys fields of the entries where the search passes, and to locate the 

// ask peer to search results matching keyword expression 
// key_to_peer is supported by DHT overlay 
peer.seq_multiple_search( keywords ) 
 Key = keywords.initialword; 
 peer = key_to_peer( Key ); 
 return peer.process_search( Key, keywords ); 
 
// process search in recursive way 
peer.process_search( Key, keywords ) 
 targetEntry = NULL; 
 foreach entry in peer 
  if entry.Key == Key and entry.Edge.initialword == keywords.initialword 
   targetEntry = entry; 
   break; 
 if targetEntry == NULL 
  return NULL; 
 length = min( targetEntry.Edge.length, keywords.length ); 
 for i= 1 to length 
  if targetEntry.Edge[i] <> keywords[i] 
   return NULL; 
 if length == keywords.length 
  return targetEntry.DHT_keys; 
 else 
  // truncate the front length words of keywords 
  nextKeywords = keywords.truncate( length ); 
  nextKey = targetEntry.ChildKey; 
  if nextKey == -1 
   return NULL; 
  else 
   peer = key_to_peer( nextKey ); 
   return peer.process_search( nextKey, nextKeywords ); 
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entry e where the search fails.  Suppose e.Edge differs from the keywords parameter at position pos. 

If pos=1, then the algorithm composes a new entry (e.Key, keywords, -1, DHT_key) and inserts it 

into the local repository of the peer that is responsible for e.Key; otherwise, it splits e.Edge into head 

and tail at pos, creates a new global unique identifier Key, and thus composes three entries (e.Key, 

head, Key, e.DHT_keys + DHT_key), (Key, tail, e.ChildKey, e.DHT_keys), (Key, keywords – head, 

-1, DHT_key), inserts them into the local repositories of the peers responsible for their Keys 

respectively and deletes e. All entry operations like splitting are atomic and have a lock on the entry. 

One insertion example of suffix tree is shown in Fig. 3. Here, we insert the text “CAB$” into the 

DST overlay. Fig. 6 illustrates the above two cases of insertion. Fig. 6(a) shows the DST distribution 

after suffix CAB$ is indexed. Suppose key_to_peer(C) returns Peer6. On Peer6, the search will 

terminate at position 1 because there is no entry whose Key is C. Thus, a new entry (C, CAB$, -1, 

{h(CAB$) }) is inserted into the DHT overlay. Fig. 6(b) shows the DST distribution after indexing 

suffix AB$. The search passes entry (A, A, 2, {h(ABABA$) }) and terminates at position 2 at entry (2, 

BA, 7, { h(ABABA$) }). Thus, (A, A, 2, { h(ABABA$) }) is changed to (A, A, 2, { h(ABABA$), 

h(CAB$) }); (2, BA, 7, { h(ABABA$) }) is deleted; and, three entries (2, B, 1, 

{ h(ABABA$),h(CAB$) }), (1, A, 7, { h(ABABA$) }), and (1, $, -1, { h(CAB$) }) are created and 

inserted into the DHT overlay. 

Tuple deletion occurs when a resource is removed. For each suffix of text, there exists one path 

from root to leaf in DST representing this suffix. The deletion algorithm deletes the DHT_key from 

DHT_keys fields of all entries in this path. If the DHT_keys field of one entry is empty after deletion, 

this entry will be removed as it never denotes any resource. Entry deletion may make one edge have 

only one child edge or have no child edge. The former does not conform to the suffix tree algorithm, 

and therefore the concatenation of the two edges is needed. Suppose the two edges are parent and 

child, the concatenation algorithm firstly appends child.Edge to parent.Edge and replaces 

parent.ChildKey with child.ChildKey, and then deletes child. The latter makes a middle edge 

become a leaf edge; therefore, the ChildKey of the middle edge is set to −1. 
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Figure 7. Examples of two cases of insertion. 

4 Enhancement 

4.1 Caching 

The search process described in 3.3 is based on the DHT routing. This means each hop in the DST 

approach will produce a DHT key_to_peer mapping function call. This is time consuming in some 

cases. In order to avoid the frequent invoking of key_to_peer, each peer maintains a table to cache 

the IP addresses of the peers responsible for its ChildKeys. Also, considering the dynamicity of the 

DHT overlay, each peer periodically refreshes its cache table in HeartBeat messages to ensure the IP 

address and ChildKey pairs are up-to-date. 

In this way, when the search process jumps from parent edge to child edge, the 

key_to_peer(ChildKey) is seldom needed to invoke. The time cost of search can be reduced to a 

magnitude like lgn + m, where n is the number of peers and m is the length of keyword sequences. 
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4.2 Node Failure and Recovery 

The DST approach relies on the DHT overlay to handle normal peer departures. However, in the 

case of node failure, the DHT overlay never guarantees the success of data taken-over. DST must 

take further work to ensure the integrity of the suffix tree structure in such cases. To ensure the 

integrity actually means to improve the entries availability. For this reason, one could maintain k 

different Keys for each entry to map it onto k points in the DHT overlay and accordingly replicate a 

single entry at k different peers. An entry is then unavailable only when all k replicas are 

simultaneously unavailable. One interesting thing is that one more Key can be computed by hashing 

an existing one, named seed Key, using secure hash functions like SHA-1 and also is globally unique. 

So theoretically, given one Key, we can take it as a seed to produce arbitrary number of Keys. At any 

time when the entry of the seed Key is unavailable, a recovery process is initiated. The successive 

Keys will be generated until an available up-to-date entry replica is detected. Then the entry of the 

seed Key is composed and reinserted into the DHT overlay. During the recovery period, any search 

request can be processed as normal, but the maintenance operations like tuple insertion and deletion 

which pass this entry will be suspended until the recovery is completed. The maintenance operations 

only affect the entry of the seed Key. During these operations, other entry replicas are only labeled 

as out-of-date, and search request can be answered as normal except that the results may be out of 

date. Fresh results can be got by a later re-request. After the maintenance operations at the entry of 

the seed Key are completed, the replicas will be updated gradually. If the entry of the seed Key is 

unavailable because of node failure when no replica is updated, the entry of the seed Key is first 

recovered in state of out-of-date, and then the maintenance operations will be taken again on this 

entry. 

5 Simulation Results 

This section presents simulation results demonstrating the benefits of the DST approach. We 

simulate a network consisting of 103 peers and taking Chord as its DHT overlay. The experimental 

data are collected from DBLP XML databases [7], which include XML metadata of 500,000 papers. 

The selected papers are firstly distributed into the DHT overlay, and then the titles of these papers 

are used as the description texts to construct the DST overlay. All experiments in this section are 

carried out upon this simulation infrastructure. 
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5.1 Load Balance 

The DHT overlay performs load balancing well [15]. We hope to know whether the DST approach 

has the same ability of load balance, i.e. allocating entries to nodes evenly. So we carry out several 

experiments to examine the load balance property of the DST approach.  

The first experiment is on how the number of entries created by the DST approach varies with 

the number of texts inserted into the DST. The reason for this experiment is that the load balance 

comparison between the DST and DHT overlay will use the number of entries in the DST. In this 

experiment, texts are randomly selected from 500,000 metadata and the total number of texts varies 

from 104 to 105 in increments of 104. For each value, the experiment is repeated 10 times. Figure 8 

shows the relationship between the total number of entries and the total number of texts. We can see 

that they almost conform to the linear relationship, i.e., the space cost of the DST approach is in 

linear with the number of inserted resources. This is a reasonably small usage of space for P2P 

networks. 
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Figure 8. The total number of entries created by the DST varies with the total number of texts. 

The load balance property of the DST approach is examined in comparison with the underlying 

DHT overlay, i.e. Chord in our simulation infrastructure. So, another experiment is carried out to test 

how the entries distributed on each peer in DST and how keys are distributed in Chord. Figure 9 

plots the 1st percentile, the 50th percentile and the mean of the number of entries per peer in DST and 

the corresponding value of the number of keys per peer in Chord. The horizontal axis represents the 

total number of entries. As described above, these scale values are computed from the previous 

experiment. We can see that the number of entries per peer exhibits large variations that increase 

linearly with the total number of entries. The 50th percentile is about 5.2 × the mean value, while the 
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max value is about 7.8 × the mean value. Although with large variations, DST shows a similar 

pattern to the DHT overlay. To give more detailed information about the distribution of entries on 

peers, Figure 10 plots the probability density of the number of entries per peer when there are 5×104 

texts processed by the DST approach. This figure also contains the comparison with the DHT 

overlay, which shows that they exhibit the similar trend. From the two comparisons, we can see that 

the DST approach preserves the load balance of the DHT overlay, and has the same potential 

improvement as the DHT overlay. Load balance can be optimized by dividing one real peer into 

several virtual peers. More discussion on this can be found in [25, 28].  
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Figure 9. The 1st percentile, the 50th percentile and the mean of the number of entries per peer in DST 

and the number of keys per peer in Chord. 
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Figure 10. The probability density of the number of entries per peer. The total number of texts in DST is 
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5×104, while the total number of keys in Chord is equal to the total number of entries in DST. 

So far, we have validated the load balance property of the DST approach in a flat view but not 

considered the entries’ level in DST. In the next experiment, we will evaluate the distribution of 

entries for different levels. 

The DST approach balances the load in the tree structure by distributing edges in the same level 

evenly across the peers as described in section 3.2 about the generation of ChildKey. Figure 11 

shows the distribution of the number of entries per peer for top 4 levels of the DST when there are 

5×104 texts processed by the DST approach. We can see that the distribution of edges in the same 

level is similar to the distribution of keys in Chord [28]. 

We carry out another experiment to evaluate the load of peers according to search requests. The 

keyword sequences for the search requests are randomly drawn from the texts, and their length 

varies from 1 to 10. We totally set up 2×104 search requests and 2×103 for each length. The load of 

one peer is calculated by the number of RPC call on it. Figure 12 shows the load of peers, where the 

horizontal axis represents the 1000 peers in ascending order of loads. We can see that the loads of 

most peers (more than 80%) are between 200 and 400, which are around the average load. 
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Figure 11. The probability density of the number of entries per peer for top 4 levels. 
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Figure 12. The loads of peers in case of 2×104 search request. 

5.2 The Length of Search Path 

The path length for a resource search is a key factor of the performance of any P2P systems. In the 

context of the DST approach, we define the length of search path as the number of peers traversed 

during a search process, and take it as the evaluation criterion of the search performance. As 

discussed in section 3.3 and section 4.1, the length of search path is determined by two factors, i.e., 

the length of the keyword sequences and the key_to_peer operation of the DHT overlay.  

To understand DST’s search performance in practice, we carry out an experiment to evaluate 

how the length of search path varies with the length of the keyword sequences. The keyword 

sequences for the search requests are randomly drawn from the texts storing in the simulation 

infrastructure, and their length varies from 1 to 10. For each length value, we repeat the evaluation 

100 times to measure the length of search path. And as Chord was selected as the DHT overlay in 

the simulation infrastructure, the time cost of key_to_peer operation is O(log n), where n is the size 

of the P2P network.  

Figure 13(a) plots the 1st percentile, the 50th percentile and the mean of the length of search path. 

The mean length of search path exhibits a sub-linear relationship with the length of keyword 

sequences, and so do the 1st and 50th percentiles. Besides, the mean length of search path tends to be 

a constant value. We have given a theoretical analysis about this interesting property in section 6. 

Figure 13(b) plots the distribution curve of the length of search path when m =4. Most values are 

around the mean value and the big ones are very few. Figure 14 plots the effect of cache on the 

length of search path. Most key_to_peer operations can be saved by caching the calling result. 
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Besides the mean value is lower, the one with cache also shows a better probability density, and the 

length values are more concentrating on the mean value. 
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Figure 13. (a) The length of search path as the function of the length m of keyword sequences. (b) The 

probability density of the length of search path when m=4. 
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Figure 14. Effect of cache on the length of search path. 

5.3 Comparison with the Inverted List Approach 

The inverted list approach can be briefly described as follows [25]: Each keyword has a posting list 

of documents containing this keyword. Its data structure is distributed onto P2P networks by 

mapping keywords onto nodes and storing the posting list on this node. 

The DST approach has a high performance in keyword sequence search, especially for lengthy 

sequences. Figure 15 plots the mean length of search path of the DST approach without cache and 

the inverted list approach. When the length of keywords > 2, the inverted list approach exhibits a 

linear tendency while the DST approach is tending towards a constant cost. And the DST approach 

maintains the sequential relationship of keywords naturally, while the inverted list approach must 

take further operations like intersections and position evaluations to make sure that the keywords 
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exist sequentially in the result texts. Although these operations could be processed locally, they are 

heavy tasks when the result datasets are large. However, tuple insertion and deletion operations in 

the DST approach require more messages than in the inverted list approach, as in this simulation, the 

DST approach generates about twice as many messages as the inverted list approach for each tuple 

insertion or deletion operation. 
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Figure 15. Average length of search path varies with the length of keyword sequences in the DST 

approach and in the inverted list approach. 

6 Theoretical Analysis 

We can see from the simulation that the length of search path is tending towards a constant value 

when the length of keyword sequences is bigger than a certain value. The underlying reason is that 

the length of search path has an upper bound (i.e., the depth of the whole virtual suffix tree). This 

section theoretically analyzes this upper bound. 

The depth of the DST can be analyzed by a probabilistic model. A text can be regarded as a 

series of independent random variables taking its value randomly from the vocabulary. 

We firstly define the repeated substring of a text as the substring that appears more than once 

within text. For example, for the text ABABA, substring ABA is one of the repeated substrings, since 

it appears twice within ABABA. 

LEMMA 1. For a text, the depth of its corresponding suffix tree is less than or equal to the 

maximum length of its repeated substrings. 

PROOF. In a suffix tree, groupi represents the group that leaf edges having the same parent can be 

gathered; prefixi represents the substring corresponding to the path that the leaf edges in groupi share 
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from the root edge to their parent edge; depthi represents the depth of leaf edges in groupi; and depth 

represents the depth of the suffix tree. 

Since each edge consumes at least one word, we could deduce the inequation:  depthi ≤ 

strlen(prefixi). 

Assume depthk = MAX(depthi | groupi ∈ group), then  depth = depthk ≤ strlen(prefixk) ≤ 

MAX( strlen(prefixi) | groupi ∈ group). 

And, according to the attributes of suffix tree, each group should have at least two leaf edges. 

Thus prefixi is shared by at least two leaf edges, and fulfills the definition of the repeated string. 

Therefore, the depth of a text’s corresponding suffix tree is less than or equal to the maximum length 

of the text’s repeated substrings. (End of Proof) 

Now, the expected value of the depth of a suffix tree is available by analyzing the length of the 

repeated substrings in its corresponding text. Under the simple probabilistic model mentioned above, 

we hope to know what kind of probability distribution the length of repeated substring exhibits. To 

find the precise probability is difficult and not necessary in this research.  The following lemma 

gives the up-bound. 

LEMMA 2. Let Pl be the probability that the text contains repeated substrings of length ≥ l.  

Suppose the length of the text is L, and the size of vocabulary is M, then 

Pl ≤ 
( )

lM
lL 2−  

PROOF. We first investigate the number of ways to compose the text containing repeated substrings 

with length ≥ l under the mentioned probabilistic model. The definition of the repeated substring 

implies an interesting property that any substring of a repeated substring is also a repeated substring. 

This means that if a text contains repeated substrings longer than l, it also contains repeated 

substrings of length l. Therefore, the way to compose the text containing repeated substrings of 

length ≥ l is also the way to compose the text containing l-length repeated substrings. So we only 

need to compute the number of ways to compose the text containing l-length repeated substrings.  

Let A1A2…AL be the text and S be l-length repeated substring, suppose S appears twice at 

positions p and q (p < q), and the remaining words in text are randomly selected from the vocabulary. 

S appears in text more than twice is a special case of the above composition method. According to 

different positions that S appears, the following two cases need to be examined: 

(1) In overlap case, we have x = q – p < l. The two appearances should be equal to each other, so 
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ApAp+1…Ap+l-1 = AqAq+1…Aq+l-1 = Ap+xAp+x+1…Ap+x+l-1. Suppose k = l / x, then we have: ApAp+1…Ap+x-1 

= Ap+xAp+x+1…Ap+2x-1 = … = Ap+kxAp+kx+1…Ap+(k+1)x-1, and ApAp+1…Ap+l-kx-1 = A p+(k+1)xA p+(k+1)x+1…A 

p+x+l-1. Therefore, ApAp+1…Ap+x-1 can determine the way to compose the two appearances. As 

ApAp+1…Ap+x-1 is also randomly selected from the vocabulary, it has Mx different cases. And the 

remaining words have ML-l-x different cases. Thus, when the distance between two appearances x < l, 

we have the number of ways is less than 1
1C +−− xlL MxML−l−x, and 1

1C +−− xlL MxML−l−x =(L−l−x+1)ML−l. 

(2) In non-overlap case, we have x = q – p > l. The repeated substring has Ml different cases and the 

remaining words have ML-2l different cases. Thus, when the distance between two appearances x > l, 

we have the number of ways is less than 1
1C +−− xlL MlML-2l, and 1

1C +−− xlL MlML-2l = (L−l−x+1)ML−l. 

The above analysis implies that the number of ways to compose the text containing l-length 

repeated substrings is less than 

∑
−

=

−+−−
lL

x

lLMxlL
1

)1( . 

And we have:  

∑
−

=

−+−−
lL

x

lLMxlL
1

)1(  < ∑
−

=

−−
lL

x

lLMlL
1

)(  = lLMlL −− 2)( . 

Therefore, the number of ways to compose the text containing repeated substrings of length ≥ l is 

less than lLMlL −− 2)( .  As the number of ways to compose the L-length text is ML, we have 

Pl ≤ 
( )

lM
lL 2−  hold.  (End of Proof). 

Lemma 2 tells us: the probability decreases with the increase of l.  If M = 1000 and L = 10000, 

the ratio of l > 20 approaches 0. This means: for a text of length 10000 corresponding to vocabulary 

size 1000, the depth of its suffix tree is less than 20 with high probability. 

As described in section 5.2, the time cost of the DST approach is measured by the length of 

search path. The worst case is the depth of the whole virtual suffix tree, in other words, the upper 

bound of the path length is the depth of the whole virtual suffix tree. Thus, the time cost of the DST 

approach is less than a reasonably small value in all probabilities. 

Also from probabilistic analysis, the sum for l ≥ 0 of the probabilities that a random variable >l 

is the average value of that random variable, so the average length of the repeated strings is (it is 

also an up-bound) 
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When l <
2

logL
M , we have lM

L2

 > 1, but a probability value is never greater than 1. Therefore, the 

average length of the repeated strings can be precisely expressed as: 
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=
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logL
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M . 

As 
1−M

M  approaches 1, the average length is logarithmically small. Hence the search request 

could be answered in certain steps. 

7 Application 

The DST approach is very useful in deep document search due to the following two characteristics. 

(1) Semantic ability. The DST can express the sequential relationship of words and cluster the text 

blocks of the same sequential keywords. Sequential words reflect richer semantics than isolated 

words. Sequential words in a text reflect its main content. So it is useful in basic semantic 

representation and analysis in document systems. 

(2) High performance in keyword sequence search. 

Especially, it is very useful in accurately retrieving scientific documents by keyword sequences, 

for example, in search by samples (text or sequential words extracted from text). 

To examine the advantages of the DST approach in document retrieval, experimental data is 

collected from IEEE portal databases, which include XML metadata of published papers. A crawler 

randomly selects 40 papers and extracts their abstracts as the description texts. After filtering out the 

preposition, the article, the conjunction, and the punctuation, the number of keywords in these 

abstracts varies from 50 to 300.  40 selected search requests are sent to both the DST approach and 

the inverted list approach. Figure 16 shows the result of each search request. 
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Figure 16. The length of search path in exact retrieval of scientific articles by providing keywords 

extracted from abstract. 

Figure 16 shows that the length of search path of the DST approach is less than that of the 

inverted list approach in processing one search request, in other words, the DST approach can finish 

one search in fewer routing hops. This means the reduced search latency and bandwidth 

consumption of the network. So the DST approach is suitable for distributed content-based 

document retrieval. 

8 Evaluation 

Here we discuss the applicability of the DST approach to get an insight into when the DST approach 

can improve the performance of an application. 

(1) Keyword-based resource locating. The DHT-based systems largely solve the problem of 

scalability as each lookup of a data item can be resolved within O(log n) (or O(na)) routing hops 

for a network of n peers. However, the DHT-based systems only support exact match lookups. 

The DST approach overcomes this shortcoming by supporting keyword sequence search. 

(2) Time cost. The DST works well with the keyword sequence search. As shown in the experiment 

and theoretically analysis, when the length of the keyword sequences is bigger than a certain 

value (like 3 in the experiment), the DST approach almost exhibits a constant time usage 

tendency. In other words, it can finish a keyword sequence search request by routing across 

certain number of peers. When the number of keywords is relatively large (e.g., 10), it can 

dramatically reduce the search latency and the bandwidth consumption of the network. However, 
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if the number of keywords is not very large or the sequential relationship between keywords is 

not needed, the DST approach behaves just like the inverted list approach. 

(3) Supporting semantics. The DST can express the sequential relationship between words that can 

represent the semantics of text better than isolated words, and can help discover the semantics 

between given words. So it can be a helpful tool for basic semantic representation and analysis, 

especially for large-scale text/string analysis applications. 

(4) Maintenance cost. The message transferring during resource publishing and removal occurs in 

two cases, one is search process, and the other is splitting or concatenation process. As the 

splitting and concatenation process only need a constant number of messages during the suffix 

insertion and deletion and the search cost exhibits a constant tendency, the total number of 

messages = ρ×the length of the text description of the resource, where ρ is a nearly constant 

factor. However, the maintenance of the DST is more complicated than the inverted list approach 

as the DST must make sure that the structure of virtual suffix tree is maintained correctly during 

resource publishing and removal. More messages will be transferred than the inverted list 

approach to adjust the indexed entries to correctly reflect the changes.  

9 Conclusion and Future Work 

The DST reflects a kind of sequential semantic relationship between words so it supports efficient 

search in large-scale documents distributed on P2P networks. The major contribution of this paper 

includes two aspects. First, the proposed approach is scalable, fast and load balanced. Second, the 

time cost of keyword sequences search is in sub-linear with the length of the string to be searched.  

Besides, the DST overlay does not rely on any particular DHT overlay because the DST approach 

interacts with the DHT overlay only by a key_to_peer mapping function. That is, any underlying 

overlay is suitable for the DST approach as long as it provides the mapping function. This enables 

the DST approach to apply to wider applications.  In addition, mechanisms of caching, replicas and 

ranking of results as well as the bloom filter technique [1] can be further incorporated with the DST 

approach to improve the search efficiency in applications.   

However, this is just a step toward an ideal semantic overlay to support intelligent applications 

on large-scale P2P networks. Different semantic structures perform differently in different 

applications. Ongoing work is to incorporate the DST approach with other semantic structures [37] 

to construct a semantic-rich overlay on P2P networks. 
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